Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности
Необходимые определения
| Определение: |
| Производящая функция называется дробно-рациональной (англ. rational), если она представима в виде отношения двух многочленов, то есть , где — многочлены конечной степени |
Отметим, что если и , то оба многочлена могут быть разделены на . Разделим оба многочлена на . Если после деления и остаются равными нулю, то разделим на ещё раз. Делить будем до тех пор, пока и будут оставаться равными нулю.
Ситуация, при которой , а , невозможна по правилам деления формальных степенных рядов.
Остаётся ситуация, при которой . Тогда необходимо разделить на , чтобы стало равным . В дальнейшем, без ограничения общности, полагаем
| Определение: |
| Последовательность называется линейной рекуррентной последовательностью (англ. constant-recursive sequence), если её члены заданы, а выполняется |
Условные обозначения
В дальнейшем будем придерживаться следующих условных обозначений:
Будем обозначать коэффициент при в
Теорема о связи этих понятий
| Теорема: |
Последовательность является линейной рекуррентной последовательностью с первыми заданными членами, определяемыми коэффициентами её производящая функция является дробно-рациональной, причём представимой в виде , где , . |
| Доказательство: |
|
Пусть — коэффициенты, задающие линейную рекуррентную последовательность , то есть первые членов заданы, а для следующих справедливо соотношение . Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов: Сложим все равенства и получим Для всех выполняется равенство , поэтому в правой части все коэффициенты при степенях, начиная с , обнулятся, а равенство будет выглядеть следующим образом:
Заметим, что второй множитель в левой части равен в точности , а степень правой части не превосходит . Получили требуемое построение. Замечание. Многочлен можно найти по формуле как числитель получившейся дроби. К результату можно применить взятие его по модулю . Это действие не испортит многочлен, так как его степень строго меньше . При этом мы сократим число операций при вычислении , поскольку достаточно найти только первых членов результирующего ряда, а для этого можно обойтись только первыми слагаемыми степенных рядов, соответствующих производящей функции и столькими же для . Итак, .
Пусть , , . Перепишем первое равенство, выразив через и : . Так как , выполнено для любого . Расписывая по определению произведения степенных рядов, получаем . Разобьём полученную сумму на две: . Так как известно, можем определить, чему равны эти суммы. Для первой выполняются равенства:
Вторая же компонента равна нулю, поскольку . Тогда . Развернём выражение для :
Перенесём все слагаемые, кроме , вправо:
|
Примеры применения теоремы
Вычисление производящей функции последовательности
Вычислим производящую функцию последовательности
- Так как последовательность является линейно рекуррентной, её производящая функция, согласно теореме, имеет вид , где (так как ), а .
- Будем искать производящую функцию в виде
- Пусть , тогда , следовательно
- Пользуясь правилом перемножения формальных степенных рядов, получаем
- Следовательно,
- Таким образом,
- Частным случаем этой формулы являются соотношения и
Представление в виде отношения многочленов производящей функции для последовательности чисел Фибоначчи
Введём обозначения:
- — производящая функция для чисел Фибоначчи,
- .
Последовательность задаётся следующим образом:
- ,
- .
Здесь и , следовательно .
К числителю применим формулу . Чтобы получить ответ, требуется всего лишь найти и .
- ,
- .
Таким образом, .
Вычисление коэффициентов ряда с помощью теоремы о связи рекуррентности и рациональности
Найдём коэффициенты ряда через построение рекуррентного соотношения.
Имеем
- ,
- .
Второе равенство позволяет найти и коэффициенты . В нашем примере , , .
Зная, что , найдём первые два коэффициента ряда, соответствующего функции . Подставим в равенство известные значения:
- . Отсюда , .
Итак, коэффициенты задаются соотношением
- , ,
- .
Известно, что . Такой результат можно получить, например, продифференцировав ряд функции . Проверим, что нахождение рекуррентного соотношения для исходной дроби даёт такой же результат, то есть для всех выполняется .
- Для начальных значений равенства выполнены: , ;
- Будем считать предыдущие равенства базой индукции. То есть существует такое число , что до него проверяемая формула работала. Для следующего числа верно . Предыдущие значения известны. Они подчинялись равенству . Раскроем формулу:
- .
- Методом математической индукции показали, что нет такого , на котором действие формулы заканчивается, и установили, что результаты нахождения коэффициентов методами дифференцирования и выражения через рекуррентную связь совпали.
См. также
Источники информации
- С. А. Ландо — Лекции о производящих функциях, стр 24