Отношение связности, компоненты связности
Случай неориентированного графа
Связность
Определение: |
Компоненты связности неориентированного графа — такие множества , что , и между любыми вершинами из одного множества существует путь, а между любыми вершинами из разных множеств — нет. |
Теорема: |
Для неориентированного графа cемейство множеств , удовлетворяющих определению, единственно и образует разбиение множества . |
Доказательство: |
Докажем, что отношение существования пути, заданное на множестве вершин графа, разбивает множество на классы эквивалентности.Рефлексивность: (очевидно).Коммутативность: Транзитивность: (в силу неориентированности графа). (очевидно). |
Определение: |
Граф | называется связным, если он состоит из одной компоненты связности. В противном случае граф называется несвязным.
Случай ориентированного графа
В общем случае для ориентированного графа существование пути — нетранзитивное отношение, поэтому вместо понятия связности различают понятие слабой и сильной связности.
Слабая связность
Определение: |
Пусть | — ориентированный граф. Рассмотрим граф , составленный из вершин графа , в котором ребро существует тогда и только тогда, когда . Скажем, что между вершинами и существет неориентированный путь, если и связаны путем в .
Определение: |
Пусть | — ориентированный граф. Компоненты слабой связности — классы эквивалентности вершин графа , на которые разбивает множество отношение существования неориентированного пути.
Определение: |
Ориентированный граф | называется слабо связным, если он состоит из одной компоненты слабой связности.
Сильная связность
Пусть
— ориентированный граф. Введем отношение на вершинах графа: . Очевидно, рефлексивно, коммутативно, транзитивно.Определение: |
Пусть | — ориентированный граф. Компоненты сильной связности — классы эквивалентности вершин графа , на которые разбивает множество отношение существования пути между вершинами в обе стороны.
Определение: |
Ориентированный граф | называется сильно связным, если он состоит из одной компоненты сильной связности.