Предел отображения в метрическом пространстве
Подмножества метрического пространства
Если метрическое пространство, то , очевидно, тоже метрическое пространство.
—Окрестность точки в метрическом пространстве
Определение: |
Пусть | . Тогда — окрестность точки , если существует открытый шар . При этом называется проколотой окрестностью точки .
Окрестность точки обозначается как , ее проколотая окрестность — .
Примеры
- Любой открытый шар является окрестностью точки .
- Числовая прямая — окрестность любого числа.
Предельная точка
Определение: |
Рассмотрим | . Тогда — предельная точка для , если в любой окрестности содержится бесконечное число точек, принадлежащих .
Пример(ы)
- , — предельная точка(как и , например).
Предел отображения
Определение: |
Пусть даны два метрических пространства
| и , и — предельная точка . Пусть .
Так как — предельная точка , то у нас есть гарантии, что выполнимо для бесконечного числа точек . Отметим: если , то нас не интересует.
Пример(ы)
— предельная точка. Тогда .
Определение: |
Если при | , тогда говорят, что отображение непрерывно в точке .
Предел сложного отображения
Если
имеет предел, то в ситуации общих МП:Теорема (предел сложного отображения): |
Пусть даны 3 МП: , у каждого своя метрика; .
Пусть также заданы отображения
— предельная точка , — предельная точка B, при этом:
Пусть Тогда утверждается, что . Если вы дочитали условие до этого места, возьмите с полки пирожок. _о_ |
Доказательство: |
|
Итак, сложная фукнция от двух непрерывных — непрерывна.
Некоторые непрерывные отображения
Теорема: |
Пусть задана
Проверим, что - непрерывное отображение. |
Доказательство: |
Воспользуемся свойством метрического пространства - неравенством треугольника:
Отсюда, ., значит, Полагаем в этом неравенстве и обращаемся к определению непрерывного отображения:Из неравенства напрямую следует, что условие выполняется при , поэтому непрерывна. |
Определение: |
- расстояние от x до A. |
Теорема: |
- непрерывна. |
Доказательство: |
По определению нижней грани, , значит, .Делая предельный переход при , получаем неравенство .Аналогично, Дальнейшие рассуждения аналогичны предыдущему доказательству непрерывности. . |
Теорема: |
Пусть F - замкнуто. Тогда |
Доказательство: |
:
:
|
Теорема (о нормальности МП): |
Любое МП - нормальное.
Пусть - МП. - замкнутые |
Доказательство: |
. Т.к. и - замкнуты, то знаменатель не равен 0. Следовательно, корректна и непрерывна в силу непрерывности . При этом: . Рассмотрим на R пару интервалов: и . Т.к. неперывна, то прообраз открытого множества - открытое множество(это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).
|
Теорема (топологическое определение непрерывности): |
Пусть у нас есть тогда
- непрерывная прообраз любого открытого множества открыт. |
Доказательство: |
1.Докажем в одну сторону Рассмотрим открытое множество G в У. Рассмотрим произвольную точку f(p) из G. Так как G открытое то По непрерывности Подберем такое Из выше сказанного следует что . можно найти для любого p значит прообраз открыт |
Замечание: так как замкнутые множества являются дополнениями открытых, то отсюда напрямую следует, что прообраз замкнутого множества при непрерывном отображении замкнут.
Свойства непрерывных отображений. Определение компакта
Определение: |
Множество ограниченное, если его можно поместить в шар. |
1)
Определение: |
Пусть | — МП. является компактом в X, если из любой последовательности точек принадлежащих K можно выделить сходящуюся подпоследовательность .
на - классический пример.
Утверждение: |
Легко видеть что если K — компакт, то оно ограниченное, замкнутое. Обратное в общем случае не верно. |
Докажем от противного. Предположим, что K неограниченное. То есть .Тогда мы можем построить последовательность из таких точек .Эта последовательность неограниченна и из нее нельзя выделить сходящуюся. Но К — компакт, получили противоречие с определением компакта. То, что K — замкнутое, следует из основного характеристического свойства замкнутых множеств. |
2)
Определение: |
является связным, если нельзя подобрать пару имеющих хотя бы одну общую точку с множеств |
Например, любой промежуток на R - связное множество.
Теорема (свойство связанного множества на вещественной оси): |
Вместе с парой точек оно содержит отрезок с концами в этих точках.
Пусть A - связное в R. Пусть . Если , свойство верно. |
Доказательство: |
не связно, получили противоречие, , ч.т.д. |
Эти классы определены, т.к:
Теорема: |
Пусть K - компакт в — непрерывное отображение. Тогда - компакт в (непрерывный образ компакта — компакт). |
Доказательство: |
Рассмотрим . . По непрерывности , ч.т.д. |
Равномерно непрерывные отображения
Определение: |
Пусть заданы МП: | . Тогда — равномерно непрерывное отображение, если
Теорема: |
Отображение, равномерно непрерывное на , непрерывно в любой точке множества . |
Доказательство: |
Достаточно положить | , тогда отображение будет непрерывным по определению.
Замечание: обратное в общем случае неверно.
Например, пусть
- непрерывная функция.Положим
. Тогда , но , значит, - не равномерно непрерывное отображение.Теорема (Кантор): |
Пусть даны МП , - компакт, - непрерывное отображение. Тогда также и равномерно непрерывное на . |
Доказательство: |
Допустим, что это не так. Тогда, по логическому отрицанию: Рассмотрим: т.к. K — компакт, т.е. в послед можно выделить сходящуюся подпоследовательность меньшую следовательно стремящуюся к нулю.
т.к. f — непрерывна на K, из получаем , значит растояние между ними стремится к нулю: противоречие. Как то так. |
Частный случай:
по т. Кантора f — равномерно и непрерывна на
т.е.
Теорема: |
Непрерывный образ связного множества связен. |
Доказательство: |
A — связно в X, f(a) — непрерывный образ, — не связно в Y - открытые множества
прообразы открытых множеств открыты, оба они входят в A, а значит A — не связно — противоречие. |
Теорема (Коши, о промежуточных значениях функции): |
Пусть — непрерывная функция на , для определенности считаем, что .
Тогда . |
Доказательство: |
Рассмотрим функцию Она непрерывна на отрезке и , Покажем, что существует такая точка , что Разделим отрезок точкой на два равных по длине отрезка, тогда либо и нужная точка найдена, либо и тогда на концах одного из полученных промежутков функция принимает значения разных знаков(на левом конце меньше нуля, на правом больше).Обозначив полученный отрезок вложенных отрезков по длине стремящихся к нулю и таких, что , разделим его снова на два равных по длине отрезка и т.д. Тогда, либо через конечное число шагов придем к искомой точке , либо получим последовательность
Пусть - общая точка всех отрезков , Тогда и в силу непрерывности функции
Поскольку получим, что |
Теорема (Вейерштрасс): |
Пусть — непрерывная функция на компакте .
Тогда существуют такие , что . |
Доказательство: |
Пусть теореме Больцано — Вейерштрасса из последовательности можно выделить сходящуюся последовательность , предел которой лежит в . — функция, отвечающая условиям теоремы (на компакте ), . Возьмём последовательность чисел таких, что и . Для каждого найдётся точка , такая что . Имеем дело с компактом, поэтому, согласноДля любого предельный переход, получаем и в силу непрерывности функции существует точка такая, что и, следовательно . Таким образом функция справедливо , поэтому, применяя ограничена и достигает своей верхней грани при . Аналогично и для нижней грани. |