Материал из Викиконспекты
Формулировка
Пусть задан полином [math] q(x_1, ..., x_n) \not\equiv 0 [/math] степени [math] d [/math] над полем [math] F [/math], а также произвольное [math] S \subset F: |S| \lt \infty [/math]. Пусть также [math] \{r_i\}_{i=1}^n [/math] - набор независимых случайных величин, равномерно распределенных в [math] F [/math]. Тогда [math] p(q(r_1, ..., r_n) = 0) \le \frac{d}{|S|} [/math].
Доказательство
Проведем доказательство теоремы индукцией по [math] n [/math].
База индукции
В случае, когда [math] n = 1 [/math], утвержение следует из того, что произвольный полином степени [math] d [/math] над полем имеет не более чем [math] d [/math] корней.
Индукционный переход
Пусть утверждение верно для всех полиномов степени [math] n - 1 [/math] (и для всех меньших). Разложим [math] q [/math] по степеням [math] x_n [/math]:
[math] q(x_1, ..., x_n) = \sum_{i=0}^d q_i(x_1, ..., x_{n-1}) x_n^i [/math]
Так как [math] q \not\equiv 0 [/math], хотя бы один [math] q_i \not\equiv 0 [/math]. Пусть [math] j = max \{ i | q_i \not\equiv 0\} [/math].
По формуле полной вероятности имеем:
[math] p(q = 0) = p(q = 0 | q_j = 0) p(q_j = 0) + p(q = 0 | q_j \ne 0) p(q_j \ne 0) [/math].
Заметим, что [math] q_j - [/math] полином от [math] n - 1 [/math] переменных, а потому к нему применимо предположение индукции. Кроме того, [math] deg \enskip q_j \le d - j [/math]. Таким образом, [math] p(q = 0 | q_j = 0) p(q_j = 0) \le 1 * \frac{d - j}{|S|} [/math].
Для получения оценки второго слагаемого зафиксируем некоторый набор [math] \{x_1, ..., x_{n-1}\} [/math], для которого [math] q_j(x_1, ..., x_{n-1}) \ne 0 [/math].
Тогда для [math] q(x_1, ... x_n) [/math] как для полинома 1 переменной степени [math] j [/math] будет выполнено:
[math] p(q = 0 | q_j \ne 0) p(q_j \ne 0) \le \frac{j}{|S|} * 1 [/math].
[math] p(q = 0) \le \frac{d-j}{|S|} + \frac{j}{|S|} = \frac{d}{|S|} [/math], что и требовалось доказать.