Блендинг изображений

Материал из Викиконспекты
Версия от 17:50, 10 января 2021; Npostnikova (обсуждение | вклад) (Добавление alpha и beta)
Перейти к: навигация, поиск
Определение:
Гармонизация изображений (англ. image harmonization) — метод, позволяющий наложить часть одного изображения поверх другого таким образом, чтобы композиция изображений выглядела естественно, без швов на границах вставки и с соответсвующими цветами и текстурами [1].


Определение:
Блендинг изображений (англ. image blending) — метод, позволяющий вставить часть одного изображения в другое таким образом, чтобы композиция изображений выглядела естественно, без швов на границах вставки и соответсвующими цветами и текстурами. В отличие от гармонизации, блендинг сам определяет какие пиксели фонового изображения нужно заменить.[1]


Блендинг Пуассона

Рис. $1.1$. Пример перепада яркости при простой вставке
Рис. $1.2$. Результат применения блендинга Пуассона

Блендинг Пуассона на самом деле является гармонизацией, так как требует маску заменяемых пикселей. Почему-то в статьях его называют блендингом (Poisson blending), хотя оригинальная статья называлась Poisson Image Editing[2]

Простая вставка одного изображения поверх другого нередко влечет заметный перепад яркости на границе вставки (рис. $1.1$). Метод Пуассона заключается в сглаживании этого перепада (рис. $1.2$) с целью сделать дефект менее заметным, используя градиент вставляемого изображения и значения пикселей фонового изображения на границе вставки.

Замечание: Для RGB изображений задача минимизации решается для каждого цветового канала отдельно.

Давайте обозначим за $S$ изображение, которое служит фоном, а за $I$ — изображение, вставляемое поверх $S$. Область вставки будем задавать двоичной маской $M$, содержащей единицы в области наложения. Например:

Фоновое
изображение $S$
Накладываемое
изображение $I$
Маска $M$
Poisson cat.jpg Poisson cherry.jpg Poisson cherry mask.png

Пусть $p$ — координаты $(x, y)$ пикселя двухмерного изображения. За $Img_p$ обозначим значение пикселя с координатами $p$ изображения $Img$. Пусть $\Omega = \{ p\;|\;M_p = 1 \}$. Тогда $\partial \Omega$ — координаты границы вставляемой области, а $int(\Omega)$ — внутренность области.

Пусть $N_p$ — множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$

Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такие значения $O_p, O_q$, чтобы их разность была близка к $v_{pq}$. Для этого решим задачу минимизации:

$$ \underset{f_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2, \text{где } O_p = S_p, p \in \partial \Omega $$

Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in int(\Omega)$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю. $$\frac{\partial{\underset{p, q \in \Omega}{\sum}\; (O_p - O_q - v_{pq})^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq}) - \underset{q \in N_p}{\sum} 2 (O_q - O_p - v_{qp}) = 2 \underset{q \in N_p}{\sum} 2 (O_p - O_q - v_{pq})$$.

Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$.

Для точек, граничащих с $\partial \Omega$: $\;|N_p| O_p - \underset{q \in N_p \cap \Omega}{\sum} O_q = \underset{q \in N_p \cap \partial \Omega}{\sum} S_q + \underset{q \in N_p}{\sum} v_{pq}$.

Для решения систем уравнений такого вида могут быть использованы итеративные алгоритмы Gauss-Seidel и V-cycle multigrid[2].

Получаем значения пикселей $O_p$, $p \in int(\Omega)$. Тогда результат $B$ блендинга Пуассона будет следующим: $$ B_p = \begin{cases} O_p,\; \text{если } p \in int(\Omega) \\ S_p,\; \text{иначе } \end{cases} $$

Mетод Пуассона сдвигает цвета накладываемого изображения, сохраняя свойства градиента (т.е. если пиксель $I_{p1}$ был меньше $I_{p2}$, то после преобразования $I_{p1}$ не станет больше $I_{p2}$), однако само значение градиета может получиться другим.[3]

Трансфер стиля

Прежде чем переходить к гармонизации картин, рассмотрим задачу трансфера стиля с изображения $S$ на изображение $I$. Для этого используются выходы скрытых слоёв свёрточной нейронной сети VGG-19[4].

Основная идея генерации изображения — решение оптимизационной задачи $\mathcal{L}(O, I, S) \xrightarrow[O]{} min$, где $O$ — итоговое изображение, $\mathcal{L}(O, I, S)$ — функция потерь. Такую задачу можно решать градиентным спуском в пространстве изображений используя метод обратного распространения ошибки.

Определение:
Пусть $F^l\left[I\right] \in \mathcal{R}^{N_l \times M_l}$ — выход $l$-го слоя сети на изображении $I$. Представим его как матрицу $N_l \times M_l$,

где $N_l$ — количество фильтров в $l$-ом слое,

$M_l$ — количество признаков (высота, умноженная на ширину). Тогда $F^l_{ij}\left[I\right]$ — $j$-ый признак $i$-го фильтра в $l$-ом слое.


Определение:
Матрица Грама (англ. Gram matrix) — матрица попарных скалярных произведений. В нашем случае матрица отражает корреляцию между выходами фильтров. $G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l} = F^l\left[I\right]F^l\left[I\right]^T$.


Image Style Transfer Using Convolutional Neural Networks[5].

Определение:
$\mathcal{L}^{\alpha}_{content}(I, O) = \displaystyle\sum_l \frac{\alpha_l}{2 N_l M_l}\displaystyle\sum_{i, j} (F^l_{ij}\left[I\right] - F^l_{ij}\left[O\right])^2$ — функция потерь содержания, где $\alpha_l$ — вклад $l$-го слоя в функцию потерь[6].


Определение:
$\mathcal{L}^{\beta}_{style}(I, O) = \displaystyle\sum_l \frac{\beta_l}{2N_l^2} \displaystyle\sum_{i, j} (G^l_{ij}\left[I\right] - G^l_{ij}\left[O\right])^2$ — функция потерь стиля, где $\beta_l$ — вклад $l$-го слоя в функцию потерь[6].


Итоговой функцией потерь будет $\mathcal{L}_{Gatys} = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(I, O)$[6]. Вес $w_{style}$, векторы $\alpha$ и $\beta$ являются, в некотором смысле, гиперпараметрами алгоритма, которые нужно подбирать.

Авторы статьи показывают, что в качестве начальной инициализации можно брать изображение $I$, изображение $S$ или белый шум — алгоритм даёт похожие результаты в этих случаях.

Начальная инициализация: A) $O_0 = I$, B) $O_0 = S$, C) $O_0 = random$

Histogram Loss

Авторы другой статьи[7] показывают, что результаты, полученные с помощью $\mathcal{L}_{Gatys}$ нестабильны и предложили другую функцию потерь, основанную на сопоставлении гистограмм.

Определение:
Сопоставление гистограмм (англ. Histogram matching) — метод обработки изображения, после которого гистограмма изображения совпадает с целевой гистограммой[8].


Определение:
Пусть $R = histmatch(S, O)$ — отображение пикселей такое, что гистограмма $S$ совпадает с гистограммой $R(O)$.


Определение:
$\mathcal{L}^{\gamma}_{hist}(S, O) = \displaystyle\sum_l \gamma_l \displaystyle\sum_{i, j} (F^l_{ij}\left[O\right] - R(F^l_{ij}\left[O\right]))^2$ — функция потерь гистограмм, где $\gamma_l$ — вклад $l$-го слоя в функцию потерь


Замечание: Если в случае остальных функций потерь нетрудно посчитать производную, то здесь могут возникнуть проблемы. Но поскольку $\displaystyle\frac{\partial \mathcal{L}_{hist}}{\partial F^l_{ij}\left[O\right]}$ является нулём почти везде, авторы предлагают при подсчёте производной считать $R(F^l_{ij}\left[O\right])$ константой, которая не зависит от $O$.

Total variation loss

Также добавим ещё одну функцию потерь, которая удаляет шумы, при этом сохраняя важные детали изображения[9][10].

Определение:
$\mathcal{L}_{tv}(O) = \displaystyle\sum_{i, j} (O^l_{i, j} - O^l_{i-1, j}))^2 + (O^l_{i, j} - O^l_{i, j-1}))^2$ — общая вариационная потеря (англ. Total variation loss).


Глубокая гармонизация картин[11]

Для того чтобы вставить изображение в картину или рисунок нужно не только сделать бесшовный переход и изменить цвета, но ещё и изменить текстуру вставляемого изображения, например сымитировать мазки кистью. Используем для этого комбинацию подходов из других статей[5][10][7].

Пример работы алгоритма Deep Image Analogy[12] (3 картинка) и Deep Painterly Harmonization[11] (4 картинка)

Алгоритм будет состоять из двух проходов. Первый проход будет делать грубую гармонизацию, а второй — более тщательную. Отличаться они будут стилевым маппингом и функциями потерь.


Определение:
Стилевым маппингом мы будем называть отображение $P : \mathcal{R}^{N_l \times M_l} \rightarrow \mathcal{R}^{N_l \times M_l}$, которое некоторым образом переставляет столбцы матрицы (не обязательно обратимо, то есть столбцы могут теряться и копироваться). Более формально, пусть $p(j)$ — новая позиция столбца $j$, тогда $P(Q)_{i, p(j)} = Q_{ij}$.


Один проход будет состоять из 3 частей:

  1. Входное $I$ и стилевое $S$ изображения подаются на вход нейронной сети VGG-19, так мы получаем $F^l_{ij}\left[I\right]$ и $F^l_{ij}\left[S\right]$.
  2. Для каждого слоя $l$ некоторым алгоритмом cтроится стилевой маппинг $P_l$, который сопоставляет столбцам из $F_l[I]$ столбцы из $F_l[S]$.
  3. Изображение $O$ восстанавливается градиентным спуском по пространству изображений, используя некоторую функцию потерь.

 fun $SinglePassHarmonization$(
   $I$,   // Входное изображение 
   $M$,   // Маска 
   $S$,   // Стилевое изображение 
   $\pi$,   // Алгоритм построения стилевого маппинга 
   $\mathcal{L}$   // Функция потерь 
 ):
   // Строим матрицы $F[I]$ и $F[S]$ с помощью свёрточной сети VGG-19 
   $F[I] \leftarrow ComputeNeuralActivations(I)$
   $F[S] \leftarrow ComputeNeuralActivations(S)$
   // Строим стилевой маппинг 
   $P \leftarrow \pi(F[I], M, F[S])$
   // Градиентным спуском ищем изображение $O$, которое минимизирует $\mathcal{L}$ 
   $O \leftarrow Reconstruct(I, M, S, P, \mathcal{L})$

   return $O$

Первый проход

Определение:
Вектор активации (англ. activation vector) — это вектор значений функции активации для каждого фильтра свёрточного слоя. Заметим, что столбцы $F_l$ являются векторами активации.


Определение:
Патчем (англ. patch) для столбца $j$ будем называть тензор $3 \times 3 \times N_l$, который состоит из соседних векторов активации в тензоре свёрточного слоя, с центром в столбце $j$


Результаты после первого прохода

Первый проход делает грубую гармонизацию, но при этом он хорошо работает с любыми стилями. Здесь используется алгоритм IndependentMapping для построения стилевого маппинга. Этот алгоритм для каждого столбца $j$ в $F_l[I]$ ищет столбец $p(j)$ в $F_l[S]$, такой что евклидово расстояние между патчем $F_l[I]$ с центром $j$ и патчем $F_l[S]$ с центром $p(j)$ минимально (метод ближайшего соседа).

 fun $IndependentMapping$(
   $F[I]$,   // Выходы слоёв после входного изображения 
   $Mask$,   // Маска 
   $F[S]$   // Выходы слоёв после стилевого изображения 
 ):
   for $l \in [1 : L]$:  // L = количество слоёв сети 
     for $j \in [1 : M_l]$:
       if $j \in Resize(Mask, l)$:  // рассматриваем патчи только внутри маски, которую нужно масштабировать в соответсвии с размером слоя $l$ 
         $P_l(j) \leftarrow NearestNeighborIndex(F[I], j, F[S])$
   return $P$

В первом проходе используется модифицированная функция потерь $\mathcal{L}_{Gatys}$, с тем лишь отличием, что к $F_l[S]$ применяется стилевой маппинг $P_l$.

Определение:
$\mathcal{L}_1(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(S, O, P)$, где $w_{style}$ — вес стилевой функции потерь


Второй проход

Результаты после второго прохода

Второй проход делает более качественную гармонизацию после первого прохода. Здесь мы будем использовать более сложный алгоритм ConsistentMapping построения стилевого маппинга и более сложную функцию потерь. Суть этого алгоритма в том, чтобы найти стилевой мапинг на некотором слое $l_{ref}$ и перенести этот маппинг на остальные слои. Также, мы будем предпочитать маппинги, в которых смежные патчи в $F_l[S]$ остаются смежными после мапинга, чтобы обеспечить пространсвенную согласованность (видимо таким образом мы хотим переносить сложные текстуры более качественно, например мазки кистью).

 fun ConsistentMapping(
   $F[I]$,   // Выходы слоёв после входного изображения 
   $Mask$,   // Маска 
   $F[S]$   // Выходы слоёв после стилевого изображения 
 ):
   // Сначала посчитаем маппинг как в IndependentMapping только для слоя $l_{ref}$ 
   for $j \in [1 : M_{l_{ref}}]$:
     if $j \in Resize(Mask, l_{ref})$:
       $P_0(j) \leftarrow NearestNeighborIndex(F[I], j, F[S])$
 
   // Далее обеспечиваем пространсвенную согласованность 
   for $j \in [1 : M_{l_{ref}}]$:
     if $j \in Resize(Mask, l_{ref})$:
       $q \leftarrow P_0(j)$
       // Инициализируем множество кандидатов на новый маппинг 
       $CSet \leftarrow \{q\}$
       // Перебираем все смежные патчи 
       for $o \in {N, NE, E, SE, S, SW, W, NW}$: 
         // Добавляем в кандидаты патч, сосед которого является маппингом для нашего соседа в соответсвующем направлении 
         $CSet \leftarrow CSet \cup \{P_0(j + o) - o\}$
       // Среди всех кандидатов выбираем тот, который ближе всего к маппингам наших соседей 
       $P_{l_{ref}}(j) \leftarrow argmin_{c \in CSet}\displaystyle\sum_o \|(F_{l_{ref}}[S]_c - F_{l_{ref}}[S]_{P_0(j + o)}\|^2$
 
   // Теперь нужно перенести маппинг для $l_{ref}$ на остальные слои 
   for $l \in [1 : L] \setminus \{l_{ref}\}$:
     for $j \in [1 : M_l]$:
       if $j \in Resize(Mask, l)$:
         // Вычисляем позицию $j'$ на слое $l_{ref}$ соответствующую позиции $j$ на слое $l$
         $j' \leftarrow ChangeResolution(l, l_{ref}, j)$
         // Берём маппинг для позиции $j'$
         $q \leftarrow P_{l_{ref}}(j')$
         // Переносим позицию $q$ обратно на слой $l$
         $P_l(j) \leftarrow ChangeResolution(l_{ref}, l, q)$
   return P

При вычислении стилевого маппинга появляется очень много дублирующихся векторов, что даёт не очень хорошие результаты. Поэтому при вычислении матрицы Грама выкинем повторяющиеся векторы. Назовём эту функцию потерь $\mathcal{L}_{s1}$.


Определение:
$\mathcal{L}_2(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{s1}(S, O, P) + w_{hist}\mathcal{L}^{\gamma}_{hist}(S, O) + w_{tv}\mathcal{L}_{tv}(O)$, где $w_{style}$, $w_{hist}$, $w_{tv}$ — веса соответсвующих функций потерь


Только второй проход
Только первый проход
Результат с $\mathcal{L}_{style}$ вместо $\mathcal{L}_{s1}$

Итоговый алгоритм

Теперь осталось запустить две стадии

 fun $Harmonization$(
   $I$,   // Входное изображение 
   $Mask$,   // Маска 
   $S$    // Стилевое изображение 
 ):
   // Грубый проход алгоритма. Каждый слой рассматривается отдельно при построении стилевого маппинга. 
   $I' \leftarrow SinglePassHarmonization(I, Mask, S, IndependentMapping, \mathcal{L}_1)$
   // Улучшение результата. Стилевой маппинг строится консистентно для всех слоёв. 
   $O  \leftarrow SinglePassHarmonization(I', Mask, S, ConsistentMapping, \mathcal{L}_2)$
   return $O$

Постобработка

Результат постобработки (без постобработки , после первой стадии, после второй стадии)

Описанный алгоритм даёт хорошие результаты в целом, но при ближайшем рассмотрении могут быть артефакты. Поэтому сделаем двухступенчатую постобработку (подробное описание есть в оригинальной статье[11]):

  1. Переведём изображение в CIELAB и применим Guided filter для a и b каналов.
  2. С помощью алгоритма PatchMatch[13] и того же Guided filter делаем так чтобы все патчи выходного изображения присутсвовали в стилевом (чтобы не было новых объектов или структур)

Подбор гиперпараметров

Влияние $l_{ref}$ на результат

Возьмём $l_{ref}$ = conv4_1. Выберем следующие веса для слоёв:

Первый проход
Параметр conv1_1 conv2_1 conv3_1 conv4_1 conv5_1
$\alpha$ $0$ $0$ $0$ $1$ $0$
$\beta$ $0$ $0$ $1/3$ $1/3$ $1/3$
Второй проход
Параметр conv1_1 conv2_1 conv3_1 conv4_1 conv5_1
$\alpha$ $0$ $0$ $0$ $1$ $0$
$\beta$ $1/4$ $1/4$ $1/4$ $1/4$ $0$
$\gamma$ $1/2$ $0$ $0$ $1/2$ $0$

Введём гиперпараметр $\tau$ и возьмём $w_{style} = w_{hist} = \tau$, $w_{tv} = \tau\frac{10}{1 + \exp(10^4 * noise(S) - 25)}$, где $noise(S) = med_{i,j}\left\{(O^l_{i, j} - O^l_{i-1, j}))^2 + (O^l_{i, j} - O^l_{i, j-1}))^2\right\}$[14]

Для того чтобы подбирать $\tau$ авторы статьи использовали классификатор стилей изображений. Они взяли VGG-19, обучили её классифицировать 18 различных стилей. Эти стили были разделены на 3 категории с разными $\tau$. Используя Softmax можно интерполировать необходимый $\tau$ по следующей таблице:

Категория стиля Примеры стилей $\tau$
Слабый Барокко, Высокое Возрождение $1$
Средний Абстрактное Искусство, Постимпрессионизм $5$
Сильный Кубизм, Экспрессионизм $10$

Примеры

Исходное изображение Простая вставка Результат Постобработка
5 target.jpg 5 naive.jpg 5 final res.png 5 final res2.png
6 target.jpg 6 naive.jpg 6 final res.png 6 final res2.png
10 target.jpg 10 naive.jpg 10 final res.png 10 final res2.png


Глубокий блендинг

Алгоритм глубокого блендинга состоит из двух этапов. На первом этапе на стилевое изображения $S$ бесшовно накладывается входное изображение $I$, получается подготовительное блендинг-изображение $B$. На втором этапе $B$ модифицируется таким образом, чтобы результат по стилю был похож на $S$.

Будем считать, что на вход подаются изображения, прошедшие предварительную обработку:

  • Используемая для вставки часть $I$ вырезана с помощью маски
  • $M$ и $I$ выровнены относительно $S$
  • Размеры матриц, задающих $M, S, I$ совпадают

Примеры входных данных:

Стилевое
изображение $S$
Deep bl s1.png Deep bl s2.png Deep bl s3.png
Накладываемое
изображение $I$
Deep bl i1.png Deep bl i2.png Deep bl i3.png

Алгоритм решает задачу блендинга, минимизируя следующие функции потерь:


Определение:
Простой вставкой (англ. copy and paste) $CAS(M, S, I)$ будем назвать изображение, полученное наложением части изображения $I$, заданной маской $M$, на изображение $S$. $CAS(M, S, I) = I \odot M + S \odot (1 - M)$, где $\odot$ — покомпонентное умножение.


Определение:
$\mathcal{L}_{grad}(S, I, M, O) = \displaystyle\frac{1}{2HW}\displaystyle\sum_{m=1}^H \gamma_l \displaystyle\sum_{n=1}^W [\,\nabla f(B) - (\nabla f(S) + \nabla f(I)) ]\,^2_{mn}$ — градиентная функция потерь (англ. Possion gradient loss). $H, W$ — высота и ширина изображений. $B = CAS(M, S, O)$ — блендинговое изображение, оптимизируемое относительно $O$.


Первый этап

Результат первого этапа

Построение подготовительного изображения начинается с белого шума. Для подсчета $\mathcal{L}_{style}$ и $\mathcal{L}_{content}$ авторами статьи[1] использовалась сеть VGG-19[4], обученная на ImageNet[15].

Алгоритм первого этапа:

 fun $SeamlessBlending$(
   $I$,   // Входное изображение 
   $M$,   // Маска 
   $S$   // Стилевое изображение 
 ):
   // Инициализируем первое приближение белым шумом 
   $Z \leftarrow RandomNoise() $
   $B \leftarrow CAS(M, S, Z)$
   // Определим суммарную функцию потерь с весами слагаемых $w$
   $\mathcal{L}_{total}(Z) \leftarrow w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B)$
   // С помощью алгоритма L-BFGS ищем изображение $Z$, которое минимизирует $\mathcal{L}_{total}$ 
   $Z \leftarrow Reconstruct(\mathcal{L}_{total}, Z)$
   return $CAS(M, S, Z)$

Второй этап

Результат после обоих этапов

 fun $StyleRefinement$(
   $B$,   // Подготовительное блендинг-изображение, результат первого этапа 
   $M$,   // Маска 
   $S$   // Стилевое изображение 
 ):
   $O \leftarrow B$
   // Определим суммарную функцию потерь с весами слагаемых $w$
   $\mathcal{L}_{total}(Z) \leftarrow w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O)$
   // С помощью алгоритма L-BFGS ищем изображение $O$, которое минимизирует $\mathcal{L}_{total}$ 
   $O \leftarrow Reconstruct(\mathcal{L}_{total}, O)$
   return $O$

Примеры

МЛ блендинг пример.png

Ссылки

Примечания

  1. 1,0 1,1 1,2 Deep Image Blending Lingzhi Zhang, Tarmily Wen, Jianbo Shi (2020)
  2. 2,0 2,1 Poisson Image Editing Patrick Perez, Michel Gangnet, Andrew Blake (2003)
  3. https://erkaman.github.io/posts/poisson_blending.html Poisson blending для самых маленьких
  4. 4,0 4,1 Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman (2014)
  5. 5,0 5,1 Image Style Transfer Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)
  6. 6,0 6,1 6,2 Здесь используется определение функции потерь, которое отличается от статьи Гатиса, но используется в таком виде в статье про гармонизацию.
  7. 7,0 7,1 Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses Eric Risser, Pierre Wilmot, Connelly Barnes (2017)
  8. https://en.wikipedia.org/wiki/Histogram_matching
  9. Understanding Deep Image Representations by Inverting Them Aravindh Mahendran, Andrea Vedaldi (2015)
  10. 10,0 10,1 Perceptual Losses for Real-Time Style Transfer and Super-Resolution Justin Johnson, Alexandre Alahi, Li Fei-Fei (2016)
  11. 11,0 11,1 11,2 https://arxiv.org/pdf/1804.03189.pdf Fujun Luan, Sylvain Paris, Eli Shechtman, Kavita Bala (2018)
  12. Visual Attribute Transfer through Deep Image Analogy Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, Sing Bing Kang (2017)
  13. https://www.researchgate.net/profile/Eli_Shechtman/publication/220184392_PatchMatch_A_Randomized_Correspondence_Algorithm_for_Structural_Image_Editing/links/02e7e520897b12bf0f000000.pdf Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman (2009)
  14. [https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_paint.lua#L470 код функции $noise$
  15. https://image-net.org/papers/imagenet_cvpr09.pdf J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database