Поиск k-ой порядковой статистики
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Определение: |
| -ой порядковой статистикой набора элементов линейно упорядоченного множества называется такой его элемент, который является -ым элементом набора в порядке сортировки |
Модификация QuickSort
Описание алгоритма
Будем использовать процедуру рассечения массива элементов из алгоритма сортировки QuickSort. Пусть нам надо найти -ую порядковую статистику, а после рассечения опорный элемент встал на позицию . Возможно три случая:
- k = m. Порядковая статистика найдена.
- k < m. Рекурсивно ищем -ую статистику в первой части массива.
- k > m. Рекурсивно ищем -ую статистику во второй части массива.
Код алгоритма
Ниже представлен код представленного алгоритма. При реализации, однако, вместо рекурсивных вызовов изменяются границы поиска статистики во внешнем цикле. В коде считаем, что процедура partition принимает массив и границы отрезка, который будет рассечён (причём правая граница отрезка не включается), и возвращает индекс опорного элемента. Также считается, что массив индексируется с нуля.
int findOrderStatistic(int[] array, int k) {
int left = 0, right = array.length;
while (true) {
int mid = partition(array, left, right);
if (mid == k) {
return array[mid];
}
else if (k < mid) {
right = mid;
}
else {
left = mid + 1;
}
}
}
Анализ времени работы
Аналогично QuickSort, может возникнуть такой же худший случай (процедура partition возвращает каждый раз левую или правую границу рассматриваемой части), при котором время работы составит . Однако, если считать, что partition возвращает все элементы рассматриваемого отрезка с равной вероятностью, то можно оценить матожидание времени работы как .
Будем оценивать количество сравнений. При поиске статистики в массиве размера функция partition (точнее, одна из распространённых вариаций) совершает не более сравнений. Далее, в зависимости от выбирается левая или правая половины (или вообще алгоритм завершает работу). Оценку проводим сверху, то есть, будем считать, что каждый раз выбирается большая половина.
Предположим, что для некоторой константы и всех (будем доказывать оценку по индукции). Тогда верно неравенство:
Преобразуем сумму из правой части равенства по формуле суммы арифметической прогрессии и оценим преобразованное выражение:
Воспользуемся полученной оценкой для оценки исходного выражения. Также, предположим, что :
Для довершения доказательства необходима проверка базы индукции, но она тривиальна: для выборки порядковой статистики из одного элемента сравнений не требуется: . Итого, мы доказали, что , следовательно,
Ссылки
- Selection algorithm — Wikipedia
- Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section 5.3.3: Minimum-Comparison Selection, pp.207–219.