Алгоритм Джонсона
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Алгоритм Джонсона (англ. Johnson's algorithm) находит кратчайшие пути между всеми парами вершин во взвешенном ориентированном графе с любыми весами ребер, но не имеющем отрицательных циклов.
Алгоритм
Описание
Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени алгоритма Флойда. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины.
. Для разреженных графов этот алгоритм ведет себя асимптотически быстрееВ этом алгоритме используется метод изменения веса (англ. reweighting). Суть его заключается в том, что для заданного графа потенциальной функции.
строится новая весовая функция , неотрицательная для всех ребер графа и сохраняющая кратчайшие пути. Такая весовая функция строится с помощью так называемойПусть
— произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет .Такая потенциальная функция строится добавлем фиктивной вершины алгоритма Форда-Беллмана из нее ( будет равно длине кратчайшего пути из в ). На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе.
в , из которой проведены ориентированные ребра нулевого веса во все остальные вершины графа, и запускомТеперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить алгоритм Дейкстры из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин.
Сохранение кратчайших путей
Утверждается, что если какой-то путь
был кратчайшим относительно весовой функции , то он будет кратчайшим и относительно новой весовой функции .Лемма: |
Пусть — два пути и Тогда |
Доказательство: |
|
Теорема о существовании потенциальной функции
Теорема: |
В графе нет отрицательных циклов существует потенциальная функция |
Доказательство: |
: Рассмотрим произвольный — цикл в графе
: Добавим фиктивную вершину в граф, а также ребра весом для всех .
|
Псевдокод
Предварительно построим граф
, где , , аfunction Johnson(G): int[][] if BellmanFord== false print "Входной граф содержит цикл с отрицательным весом" return else for = // вычислено алгоритмом Беллмана — Форда for = for Dijkstra for return
Итого, в начале алгоритм Форда-Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл.
Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин.
Сложность
Алгоритм Джонсона работает за алгоритма Дейкстры. Если в алгоритме Дейкстры неубывающая очередь с приоритетами реализована в виде фибоначчиевой кучи, то время работы алгоритма Джонсона есть . В случае реализации очереди с приоритетами в виде двоичной кучи время работы равно .
, где — время работыСм. также
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.
- Визуализатор алгоритма