Анализ реализации с ранговой эвристикой
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть
— процедура объединения двух множеств, содержащих и , а — поиск представителя множества, содержащего . Рассмотрим операций и операций ( ). Не теряя общности, будем считать, что принимает в качестве аргументов представителей, то есть заменяем на .Оценим стоимость операции
. Обозначим — ранг вершины, — представитель множества, содержащего , — отец вершины, — количество вершин в поддереве, корнем которого является .Утверждение: |
Из принципа работы функции следует:
|
Утверждение: |
Докажем по индукции: Для 0 равенство очевидно. Ранг вершины станет равным при объединении поддеревьев ранга , следовательно: . |
Из последнего утверждения следует:
- .
- Количество вершин ранга .
Теорема: |
Амортизационная стоимость |
Доказательство: |
Рассмотрим некоторое число . Разобьем наши ребра на три класса:
Обозначим эти классы .Амортизационная стоимость , где означает, что ребро, начало которого находится в , было пройдено во время выполнения текущего . Ребро эквивалентно вершине, в которой оно начинается.В силу того, что получаем:. Во время после прохождения K ребер из второго класса .Из выше сказанного и первого следствия второго утверждения получаем, что: . Для того, чтобы существовал необходимо, чтобы .
Из первого утверждения и в силу использования сжатия путей следует, что cтрого увеличивается при переходе по ребру из .Как максимум через переходов ребро перестанет появляться в классе .Из второго следствия второго утверждения следует: При :
|