1pi1sumwu
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
А нельзя ли обозвать как-то по-другому?
Задача: |
Дано | работ и станок. Для каждой работы известны её дедлайн и вес . Время выполнения всех работ равно . Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Алгоритм
Идея алгоритма состоит в том, чтобы на шаге
строить оптимальное расписание для первых работ с наименьшими дедлайнами.Будем считать, что работы отсортированны в порядке неуменьшения их дедлайнов. Пусть мы уже рассмотрели первые
работ, тогда множество содержит только те работы, которые мы успеваем выполнить в порядке неуменьшения их дедлайнов при оптимальном составлении расписания . Рассмотрим работу . Если мы успеваем выполнить данную работу до ее дедлайна, то добавим ее во множество , тем самым получив . Если же работу выполнить до дедлайна мы не успеваем, то найдем в работу с наименьшим весом и заменим ее на работу .Таким образом, рассмотрев все работы, мы получим
— множество работ, которые мы успеваем выполнить до наступления их дедлайнов, причем вес просроченных работ будет наименьшим. От порядка выполнения просроченных работ ничего не зависит, поэтому расположить в расписании их можно произвольным образом.Псевдокод
Предполагаем, что перед началом выполнения алгоритма выполняется, что
. Все работы, дедлайн которых равен , мы в любом случае выполнить без штрафа не успеем, поэтому их изначально можно отнести к просроченным.В псевдокоде используются переменные:
- — множество непросроченных работ
- — текущее время
Set<int> p1sumwu(int, int ): int Set<int> = for to if else найти такое , что return
Доказательство корректности
Утверждение: |
Алгоритм строит корректное расписание. |
Если мы успеваем выполнить очередную работу, то, очевидно, от ее добавления, расписание не может стать некорректным. В противном случае мы пытаемся заменить одну работу из множества | на текущую. Но это так же не может сделать наше расписание некорректным. Это следует из того, что мы рассматриваем работы в порядке неуменьшениях их дедлайнов. Пусть мы заменяем работу на работу . Но , следовательно, если мы успевали выполнить работу , то успеем выполнить и работу .
Утверждение: |
Построенное данным алгоритмом расписание оптимально. |
Пусть множество непросроченных работ в оптимальном расписании. Также пусть — первая работа из множества , которая не входит в , а — первая работа из , не содержащаяся в . Мы можем предполагать существование этих работ, потому что не может содержать как подмножество, иначе это противоречило бы построению . С другой стороны, если , то должно быть тоже оптимальным, и правильность алгоритма доказана.Для доказательства покажем, что мы можем заменить работу на работу в оптимальном расписании, не увеличивая минимизируемую функцию.Рассмотрим два случая:
|
Время работы
Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества двоичная куча и красно-черное дерево.
, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества использовать структуру данных, умеющую выполнять данные операции за , то время работы всего алгоритма будет составлять . Например, такими структурами данных являютсяCм. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 96 стр. — ISBN 978-3-540-69515-8