Алгоритм Борувки
Версия от 19:07, 4 сентября 2022; Maintenance script (обсуждение | вклад) (rollbackEdits.php mass rollback)
Алгоритм Борувки (англ. Borůvka's algorithm) — алгоритм поиска минимального остовного дерева во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.
Описание алгоритма
Алгоритм состоит из нескольких шагов:
- Изначально каждая вершина графа — тривиальное дерево, а ребра не принадлежат никакому дереву.
- Для каждого дерева найдем минимальное инцидентное ему ребро. Добавим все такие ребра.
- Повторяем шаг пока в графе не останется только одно дерево .
Данный алгоритм может работать неправильно, если в графе есть ребра равные по весу. Например, полный граф из трех вершин, вес каждого ребра равен один. В могут быть добавлены все три ребра. Избежать эту проблему можно, например, выбирая в первом пункте среди ребер, равных по весу, ребро с наименьшим номером.
Доказательство корректности
Теорема: |
Алгоритм Борувки строит MST. |
Доказательство: |
Очевидно, что в результате работы алгоритма получается дерево. Пусть — минимальное остовное дерево графа , а — дерево полученное после работы алгоритма.Покажем, что .Предположим обратное Понятно, что в момент, когда ребро . Пусть ребро — первое добавленное ребро дерева , не принадлежащее дереву . Пусть — путь, соединяющий в дереве вершины ребра . добавляли, какое-то ребро (назовем его ) не было добавлено. По алгоритму . Однако тогда — остовное дерево веса не превышающего вес дерева . Получили противоречение. Следовательно . |
Реализация
У вершины есть поле
— компонента связности, которой принадлежит эта вершина.
//— исходный граф // — весовая функция function while for Component // Component — множество компонент связности в . Для // каждой компоненты связности вес минимального ребра = . // Разбиваем граф на компоненты связности обычным dfs-ом. for if if if for Component // Добавляем ребро, если его не было в return |
Пример
Асимптотика
На
-ой итерации внешнего цикла каждая компонента состоит как минимум из двух компонент из -й итерации. Значит, на каждой итерации число компонент уменьшается как минимум в раза. Тогда внешний цикл повторяется раз, так как количество компонент изначально равно количеству вершин. Что же касается внутреннего цикла, то он выполняется за , где — количество рёбер в исходном графе. Следовательно конечное время работы алгоритма .