Задача о наибольшей общей подпоследовательности
Определение: |
Последовательность | является подпоследовательностью (англ. subsequence) последовательности , если существует строго возрастающая последовательность индексов таких, что для всех выполняется соотношение .
Другими словами, подпоследовательность данной последовательности — это последовательность, из которой удалили ноль или больше элементов. Например,
является подпоследовательностью последовательности , а соответствующая последовательность индексов имеет вид .Определение: |
Последовательность | является общей подпоследовательностью (англ. common subsequence) последовательностей и , если является подпоследовательностью как , так и .
Задача: |
Пусть имеются последовательности | и . Необходимо найти
Наивное решение
Переберем все различные подпоследовательности обеих строк и сравним их. Тогда искомая
гарантированно найдётся, однако время работы алгоритма будет экспоненциально зависеть от длины исходных последовательностей.Динамическое программирование
Для решения данной задачи используем Принцип оптимальности на префиксе.
Доказательство оптимальности
Теорема: |
Пусть имеются последовательности и , а — их .
|
Доказательство: |
|
Решение
Обозначим как
префиксов данных последовательностей, заканчивающихся в элементах с номерами и соответственно. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит
, где и — длины последовательностей.Построение подпоследовательности
Для каждой пары элементов помимо длины
соответствующих префиксов хранятся и номера последних элементов, участвующих в этой .Таким образом, посчитав ответ, можно восстановить всю наибольшую общую подпоследовательность.Псевдокод
, — данные последовательности; — для префикса длины последовательности и префикса длины последовательности ; — пара индексов элемента таблицы, соответствующего оптимальному решению вспомогательной задачи, выбранной при вычислении .
// подсчёт таблиц int LCS(x: vector, y: vector): m = length(x) n = length(y) for i = 1 to m lcs[i][0] = 0 for j = 0 to n lcs[0][j] = 0 for i = 1 to m for j = 1 to n if x[i] == y[j] lcs[i][j] = lcs[i - 1][j - 1] + 1 prev[i][j] = pair(i - 1, j - 1) else if lcs[i - 1][j] >= lcs[i][j - 1] lcs[i][j] = lcs[i - 1][j] prev[i][j] = pair(i - 1, j) else lcs[i][j] = lcs[i][j - 1] prev[i][j] = pair(i, j - 1) // вывод LCS, вызывается как printLCS(m, n) int printLCS(i: int, j: int): if i == 0 or j == 0 // пришли к началу LCS return if prev[i][j] == pair(i - 1, j - 1) // если пришли в lcs[i][j] из lcs[i - 1][j - 1], то x[i] == y[j], надо вывести этот элемент printLCS(i - 1, j - 1) print x[i] else if prev[i][j] == pair(i - 1, j) printLCS(i - 1, j) else printLCS(i, j - 1)
Оптимизация для вычисления только длины
Заметим, что для вычисления
нужны только -ая и -ая строчки матрицы . Тогда можно использовать лишь элементов таблицы:int LCS2(x: vector, y: vector): if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y swap(x, y) m = length(x) n = length(y) for j = 0 to n lcs[0][j] = 0 lcs[1][j] = 0 for i = 1 to m lcs[1][0] = 0 for j = 1 to n lcs[0][j] = lcs[1][j] // элемент, который был в a[1][j], теперь в предыдущей строчке if x[i] == y[j] lcs[1][j] = lcs[0][j - 1] + 1 else if lcs[0][j] >= lcs[1][j - 1] lcs[1][j] = lcs[0][j] else lcs[1][j] = lcs[1][j - 1] // ответ — lcs[1][n]
Также можно заметить, что от
-ой строчки нужны только элементы с -го столбца. В этом случае можно использовать лишь элементов таблицы:int LCS3(x: vector, y: vector): if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y swap(x, y) m = length(x) n = length(y) for j = 0 to n lcs[j] = 0 d = 0 // d — дополнительная переменная, в ней хранится lcs[i - 1][j - 1] // в lcs[j], lcs[j + 1], …, lcs[n] хранятся lcs[i - 1][j], lcs[i - 1][j + 1], …, lcs[i - 1][n] // в lcs[0], lcs[1], …, lcs[j - 1] хранятся lcs[i][0], lcs[i][1], …, lcs[i][j - 1] for i = 1 to m for j = 1 to n tmp = lcs[j] if x[i] == y[j] lcs[j] = d + 1 else if lcs[j] >= lcs[j - 1] lcs[j] = lcs[j] // в lcs[j] и так хранится lcs[i - 1][j] else lcs[j] = lcs[j - 1] d = tmp // ответ — lcs[n]
Длина кратчайшей общей суперпоследовательности
Для двух подпоследовательностей [1]
и длина кратчайшей общей суперпоследовательности равнаРешение для случая k строк
Найдем решение для 3 строк.
Задача: |
Пусть имеются последовательности | , и . Необходимо найти
Наивное решение подсчёта
нескольких строк при помощи последовательного нахождения двух строк и уменьшением набора строк на единицу, не срабатывает. Это доказывается следующим контрпримером. Даны три последовательности:
Подсчитаем
Это неверно, так как
Теорема: |
Пусть имеются последовательности , и , а — их .
|
Доказательство: |
Доказательство аналогично доказательству для двух последовательностей. |
Решение
Обозначим как
наибольшую общую подпоследовательность префиксов данных последовательностей, заканчивающихся в элементах с номерами , и соответственно. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит
, где , и — длины последовательностей.Аналогичным образом задача решается для
строк. Заполняется -мерная динамика.Алгоритм Хиршберга
Задача: |
Пусть имеются последовательности | и . Необходимо найти за время и памяти.
Алгоритм
Не теряя общности, будем считать, что
. Тогда разобьем последовательность на две равные части и . Найдем для и всех префиксов последовательности , аналогично — для развернутых последовательностей и . Стоит отметить, что для нахождения на всех префиксах достаточно одного квадратичного прохода, так как -ый элемент последней строки результирующей матрицы есть не что иное, как первой последовательности и префикса второй длины . Затем выберем такой индекс , что . Запустим алгоритм рекурсивно для пар и . Будем продолжать до тех пор, пока в не останется ровно элемент, тогда достаточно проверить, входит ли он текущую часть , если входит, то добавим этот символ в ответ, если нет — вернем пустую строку. Таким образом, в результате работы алгоритма соберем последовательность, которая будет являться искомой.Псевдокод
В данном примере
— последовательности, — вектор ответа. — функция, возвращающая последнюю строку матрицы , для определения ответа на всех префиксах. Важно отметить, что для ее вычисления необходимо и достаточно хранить лишь две соседние строки матрицы в любой момент времени. Так как вопрос оптимальности используемой памяти является важным местом данного алгоритма, то передачу различных отрезков последовательностей стоит воспринимать, как скрытую передачу границ для хранящихся глобально данных.void hirschberg(x: vector, y: vector): if y.size() <= 0 return if x.size() == 1 if y.contains(x[0]) ans.push(x[0]) // сохранение очередного элемента lcs return mid = x.size() / 2 f[] = LCS(x[0 .. mid], y) s[] = LCS(reverse(x[mid + 1 .. x.size()]), reverse(y)) // s[i] хранит lcs для второй половины x и суффикса y[i..y.size()] // это позволяет использовать общий индекс в качестве точки разделения max = s[0] it_max = -1 for j = 0 to y.size() if f[j] + s[y.size() - (j + 1)] > max max = f[j] + s[y.size() - (j + 1)] it_max = j if f[y.size() - 1] > max it_max = y.size() - 1 hirschberg(x[0 .. mid], y[0 .. it_max]) hirschberg(x[mid + 1 .. x.size()], y[it_max + 1 .. y.size()])
Доказательство корректности
Осталось понять, что алгоритм находит нужную подпоследовательность. Не теряя общности, будем считать, что
единственная, так как нам не важно какую из равных по длине подпоследовательностей выбирать. Тогда рассмотрим разделение на две части , часть символов LCS (возможно нулевая) попадет в первую половину, оставшаяся — во вторую. Пусть последний символ из LCS в первой половине, тогда наш алгоритм выберет соответствующий ему в качестве точки разделения. То есть символы из , которые связаны со второй половиной , лежат правее , в противном случае, либо не состоит в паре с , либо не последний символ из в первой половине. Заметим, что если первая половина не содержит , то точки разбиения не будет, для симметричного случая со второй половиной точкой разбиения будет , которая включается в первую половину. Таким образом, мы свели поиск исходной к поиску двух независимых частей. Когда в останется символ, то возможны два варинта, либо он входит в , либо нет, в чем мы убеждаемся линейным поиском, случай, когда последний не входит в , возникает из-за того, что на каком-то шаге, вся подпоследовательность оказалась в одной из половин .Асимптотика
Рассмотрим временные затраты алгоритма. Рекурсия представима в виде бинарного дерева высоты не более
, так как она основана на разделении первой последовательности на две равные части на каждом шаге алгоритма. Оценим время выполнения для произвольной глубины такого дерева и просуммируем результат по всем возможным значениям парметра. На глубине находится вершин с частью последовательности размера и частью длины , где сумма семейства равна . Таким образом, получаем:- На глубине h:
- Сумммируем по глубинам:
- Итоговая асимптотика алгоритма:
Проанализируем затраты на память. Три глобальные последовательности (две исходные и одна для ответа), к которым мы обращаемся внутри алгоритма, требуют памяти. Дополнительно на каждом шаге рекурсии вызываются функции , которые суммарно требуют , где — длина части в текущий момент, так как для нахождения достаточно двух строк матрицы . Вспомогательные массивы удаляются перед рекурсивным вызовом, таким образом, общие затраты равны сумме размеров массивов на одной глубине рекурсии, то есть:
- На глубине h:
- Итого:
См. также
Примечания
Список литературы
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4
- Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Commun. ACM 18, 341–343 (1975)