[math]\overline x \in V \subset \mathbb{R}^n, \overline y \in W \subset \mathbb{R}^m[/math]; [math]V\times W=\{(\overline x, \overline y) \in \mathbb R^{n+m},\overline x \in V, \overline y \in W\}[/math].
[math]f\colon V(\overline {x_0})\times W(\overline {y_0}) \to \mathbb{R}^m[/math], [math]f(x_0,y_0)=0^m[/math]. Существуют ли такие [math]\delta_1,\delta_2\gt 0[/math], что [math]\forall\overline x\in V_{\delta_1}(\overline{x_0})~\nexists\overline y\in W_{\delta_2}(\overline{y_0})\colon f(\overline x,\overline y)=0^m[/math]?
Если это так, то в силу единственности y определяем [math]\overline y = \phi(\overline x)[/math] на [math]V_{\delta_1}(\overline{x_0})[/math] так, чтобы [math]f(\overline x,\phi(\overline x))=0^m[/math]. [math]\phi[/math] — неявное отображение, определяется как [math]f(\overline x,\overline y)=0^m,~(x_0,y_0)\colon f(\overline{x_0},\overline{y_0})=0^m[/math]
Пример, единичная окружность:
[math]x,y\in\mathbb{R},f(x,y)=x^2+y^2-1.~f(x,y)=0\Longleftrightarrow x^2+y^2=1[/math]
В малых окрестностях начальных данных вертикаль, проведённая через [math]x[/math], будет давать соответствующий единственный [math]y[/math]. Если решать задачу вне окрестности [math]y_0[/math], получится 2 [math]y[/math], теряется единственность [math]y[/math]. Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. [math]y=\sqrt{1-x^2};y=\pm\sqrt{1-x^2}[/math].
Сейчас мы установим условия, при которых неявное отображение будет существовать:
[math]\overline z=f(\overline x,\overline y).~\overline x \in \mathbb R^n;~y,z\in R^m.~f_{\overline y}'[/math] — произвольное отображение [math]f[/math], при фиксированном [math]x[/math] и варьирующемся [math]y[/math].
[math]f_{\overline y}'(\overline x,\overline y)[/math] (зависит и от [math]\overline x[/math], и от [math]\overline y[/math]). Непрерывность [math]f_{\overline y}'[/math]: производная — линейный оператор, поэтому непрерывность понимается в метрике линейного оператора:
[math]\forall \varepsilon \gt 0 \exists \delta \gt 0\colon~\|\overline{\mathcal{4}x}\|,\|\overline{\mathcal{4}y}\|\lt \delta\Rightarrow\|f_{\overline y}'(\overline x + \overline{\mathcal{4}x},\overline y + \overline{\mathcal{4}y})-f_{\overline y}'(\overline x,\overline y)\|\lt \varepsilon[/math]
[math]f_{\overline y}'(\overline x,\overline y)[/math] — матрица, размером [math]m\times m[/math]. Оператор непрерывно обратим в [math](\overline x,\overline y)\Longleftrightarrow[/math] у этой матрицы существует обратная (её детерминант не равен нулю).
{{Теорема
|about=
О неявном отображении
|statement=
Пусть для [math]f[/math] поставлена задача о неявном отображении, с начальными данными [math](x_0,y_0)[/math]. Известно, что в окрестности начальных данных[math]f_{\overline y}'[/math] непрерывно зависит от [math]\overline x,\overline y[/math]; и в [math](x_0,y_0)[/math] она непрерывно обратима. Тогда в некоторой окрестности начальных данных неявное отображение существует.
|proof=
Доказательство разбиваем на 2 этапа (и на экзамене они тоже будут спрашиваться по отдельности):
1 этап: [math]\Gamma_0=(f_{\overline y}'(\overline{x_0},\overline{y_0}))^{-1},~f(\overline x, \overline y)=0^m[/math]
[math]\overline y = \overline y - \Gamma_0 f(\overline x, \overline y)[/math]. Проверим равносильность: пусть [math]f(\overline x, \overline y)=0[/math]. [math]\Gamma_0 f(\overline x, \overline y)=\Gamma_0(0^m)=0,~\overline y = \overline y[/math] — верное в любом случае уравнение.
Пусть [math]\overline y = \overline y - \Gamma_0 f(\overline x, \overline y)[/math]. Тогда [math]\Gamma_0 f(\overline x, \overline y)=0^m. \Gamma_0=(f_{\overline y}'(\overline{x_0},\overline{y_0}))^{-1}[/math], следовательно, [math]det \Gamma_0 \ne 0[/math], поэтому соответствующая однородная система уравнений будет иметь только тривиальные решения и [math]f(\overline x, \overline y)=0^m[/math]
[math]T(\overline x, \overline y)=\overline y-\Gamma_0 f(\overline x, \overline y)[/math]
[math]\overline y =T(\overline x,\overline y)[/math]. Нам нужно решить задачу на неподвижную точку для отображения [math]T[/math] по переменной [math]\overline y[/math] для фиксированного [math]\overline x[/math]. Решать мы будем, применяя принцип сжатия Банаха. Существует ли (в определённых начальных данных) коэффициент сжатия?
[math]T'=J-\Gamma_0f_y';~\Gamma_0f_y'(\overline{x_0},\overline{y_0})=J[/math]. Значит, [math]T_{\overline y}'(\overline{x_0},\overline{y_0})=0[/math]. По условию [math]f[/math] зависит от [math]\overline x, \overline y[/math], следовательно, [math]T'[/math] — тоже. Тем самым, в определении непрерывности полагаем [math]\varepsilon=\frac 12,\exists \delta\gt 0\colon~\|\overline{\mathcal 4 x}\|,\|\overline{\mathcal 4 y}\| \le \delta \Rightarrow \| T_{\overline y}'(\overline{x_0}+\overline{\mathcal 4{x_0}},\overline{y_0}+\overline{\mathcal 4{y_0}})\| \le \frac 12[/math]
[math]V_{\delta}(\overline{x_0}),~W_{\delta}(\overline{y_0})[/math] такие, что [math]T_{\overline y}'(\overline x, \overline y) \le \frac 12,~\forall \overline y',\overline y'' \in W_{\delta}(\overline{y_0}),~\forall\overline x\in V_{\delta}(\overline{x_0})[/math]
По неравенству Лаг