Теорема Валианта-Вазирани
Версия от 14:12, 3 мая 2010; Ulyantsev (обсуждение | вклад)
Теорема Валианта-Вазирани (Valiant–Vazirani theorem) является клевым современным результатом в теории сложности.
Формулировка теоремы
Если язык USAT принадлежит классу P, то классы языков NP и RP совпадают.
Доказательство теоремы
Для доказательства этого факта покажем, что по заданной в КНФ формуле можно за полиномиальное время построить набор формул такой, что:
- если формула неудовлетворима (то есть не принадлежит SAT), то все формулы также неудовлетворимы;
- если формула удовлетворима, то с вероятностью большей ½ в наборе найдется формула ∈ USAT.
Таким образом задача принадлежности формулы языку SAT будет разрешаться за полиномиальное время с вероятностью большей ½, то есть SAT ∈ RP, следовательно, NP=RP.
Построение набора формул
Пусть формуле с n переменными соответствует n-битное число , которое кодирует значения переменных.
- Выберем равновероятно случайным образом целое число из отрезка [0..n]. Определим число .
- Выберем равновероятно случайным образом целые числа из отрезка [1..] и из отрезка [0..].
- Добавим в набор формулу , где выражение в данном случае обозначает булеву запись в КНФ, зависящую от переменных и соответствующую данному сравнению.
Данное построение работает за полиномиальное время и если формула невыполнима, то и все формулы невыполнимы.