Изменения

Перейти к: навигация, поиск

Коды Грея

2 байта добавлено, 05:31, 1 ноября 2011
м
Доказательство приняло более-менее адекватный вид.
<tex>\forall x < 2^n \enskip L_x = 0M_x = 0(x_{n-1}x_{n-2}...x_{0} \oplus 0x_{n-1}x_{n-2}...x_{1}) = 0x_{n-1}x_{n-2}...x_{0} \oplus 00x_{n-1}x_{n-2}...x_{1} = x \oplus (x \div 2)</tex>
<tex>\forall x \geq 2^n \enskip L_x = 1M_y</tex>, где <tex>y = 2^{n+1} - 1 - x = \neg x</tex>, то есть  <tex>L_x = 1(\neg x_{n-1} \neg x_{n-2}... \neg x_{0} \oplus 0 \neg x_{n-1} \neg x_{n-2}... \neg x_{1}) = 1(\neg x_{n-1}x_{n-2}...x_{0} \oplus 0x_{n-1}x_{n-2}...x_{1}) = 1(x_{n-1}x_{n-2}...x_{0} \oplus 1x_{n-1}x_{n-2}...x_{1}) = 1x_{n-1}x_{n-2}...x_{0} \oplus 01x_{n-1}x_{n-2}...x_{1} = x_{n}x_{n-1}x_{n-2}...x_{0} \oplus 0x_{n}x_{n-1}x_{n-2}...x_{1} = x \oplus (x \div 2)</tex>
Таким образом, по теореме о математической индукции требуемое доказано.
170
правок

Навигация