Изменения
Нет описания правки
Таким образом множество всех функций <tex>K = \{f_g : g \in G\}</tex> {{---}} подгруппа симметрической группы, так как композиция двух функций из <tex>K</tex> не выводит из <tex>K</tex>, потому что <tex>(f_a \circ f_b)(x) = f_a(f_b(x)) = a * b * x = f_{a*b}(x) = f_c(x) </tex>, где <tex>c = a * b </tex>, значит <tex>f_a \circ f_b \in K</tex>
Рассмотрим множество <tex>K</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex> изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что для всех <tex>x \in G \quad(f_g \circ f_h)(x) = f_g(f_h(x)) = g*(h*x) = (g*h)*x = f_{(g*h)}(x)</tex>, то есть <tex>T(g)\circ T(h) = T(g*h)</tex>.
Значит <tex>T</tex> {{---}} гомоморфизм.