Изменения

Перейти к: навигация, поиск

Нахождение количества разбиений числа на слагаемые

Нет изменений в размере, 06:44, 15 декабря 2011
Нет описания правки
После раскрытия скобок каждый член произведения получается в результате умножения мономов (одночленов), взятых по одному из каждой скобки. Если в первой скобке взять <tex dpi = "145">x^{m_1}</tex>, во второй — <tex dpi = "145">x^{2m_2}</tex> и т.д., то их произведение будет равно <tex dpi = "145">x^{m_1 + 2m_2 + 3m_3 + \dots}.</tex> Значит, после раскрытия скобок получится сумма мономов вида <tex dpi = "145">x^{m_1 + 2m_2 + 3m_3 + \dots}</tex>.
Можно увидеть, что <tex> x^n </tex> встретится в полученной бесконечной сумме столько раз, сколькими способами можно представить <tex>n</tex> как сумму <tex>m_1 + 2m_2 + 3m_3 + ...</tex> Каждому такому представлению отвечает разбиение числа <tex>n</tex> на <tex>m_1</tex> единиц, <tex>m_2</tex> двоек и т.д. Таким образом очевидно получаются все разбиения, так как из первой скобки мы можем взять любое <tex>x^{m_i}</tex>, где <tex>m_i \in \{[0 \dots \infty \}),</tex> то есть произвольное количество единиц в нашем разбиении. Аналогично, мы можем взять произвольное количество двоек и т.д. Но при раскрытии скобок мы находим произведения всех возможных комбинации множителей из разных скобок. Поэтому коэффициент при <tex>x^n</tex> равен числу разбиений <tex>p(n)</tex>.
Посмотрим теперь на выражения в скобках. Каждое из них — бесконечная геометрическая прогрессия. По формуле ее суммирования:
61
правка

Навигация