Изменения
Нет описания правки
Рассмотрим минимальную неправильную схему. Тогда на той формуле, на которой эта схема неправильна, по предположению, что все более короткие формулы правильны,эта формула распознается схемами с меньшим числом входов. Поэтому обе скобки будут 0 и мы не узнаем набор схем. Развернем формулу до конца.
<tex> \forall{\varphi{}}: |\varphi{}|=m \forall{x_1}..\forall{x_m} если </tex><tex> C_m(\varphi{})=0 \Rightarrow \varphi{(x_1)}=0 </tex> иначе <tex> C_{m-1}(\varphi|_{x_1=0})=0 \Rightarrow \varphi|_{x_1=0}(x_2)=0</tex>
<tex>C_{m-1}(\varphi{}|_{x_1=1})=0 \Rightarrow \varphi{}|_{x_1=0}(x_2)=0</tex>
<tex>C_{m-1}(\varphi{}|{x_1=0}) \vee{} C_{m-1}(\varphi{}|_{x_1=1})</tex>
И рекурсивно вызываемся от того из них которое равно 1. Ту же самую формулу но записываем от того из них которое равно 1 (это же предикат но для того из них фи при х1= для которого труе)