Изменения
→Теоремы
Пусть <tex>c_f</tex> - функция пропускных способностей в <tex>N(f)</tex>, а <tex>p_f(v), in_f(v), out_f(v)</tex> - потенциал, множество входящих ребер и множество выходящих ребер вершины <tex>v</tex> из <tex>N(f)</tex>.
Достаточно доказать, что <tex>p_f(v) = p(v)</tex>. Ребру <tex>e</tex> из <tex>in(v)</tex> соответствуют ребро <tex>e_1</tex> из <tex>in_f(v)</tex> с пропускной способностью <tex>c(e) - f(e)</tex>, и ребро <tex>e_2</tex> из <tex>out(v)</tex> с пропускной способностью <tex>f(e)</tex>. Аналогично, ребру <tex>e</tex> из <tex>out(v)</tex> соответствуют ребра из <tex>out_f(v)</tex> с пропускной способностью <tex>c(v) - f (v)</tex> и <tex>in_f(v)</tex> с пропускной способностью <tex>f(e)</tex>. Используя правило закон сохранения потока, нетрудно проверить, что
<tex>\displaystyle\sum_{e\in in_f(v)} c_f(e) = \sum_{e\in in(v)}c(e)</tex>