69
правок
Изменения
Нет описания правки
{{Теорема
|id=th1
|about=О рекурсии
|statement= Пусть <tex>V(n, x)</tex> {{---}} вычислимая функция.Тогда найдется такая вычислимая <tex>p</tex>, что <tex>\forall y</tex> <tex>p(y) = V(p, y)</tex>.
|proof=
Пусть есть вычислимая <tex>V(x,y)</tex>. Введем вспомогательную функцию <tex>getSrc()</tex> следующим образом: <br>
<code> <font size = "3em">
</font> </code>
Заметим, что функция <tex>getSrc()</tex> возвращает код функции <tex>p(y)</tex>, значит <tex>p(y)</tex> удовлетворяет требованию <tex>\forall y</tex> <tex>p(y) = V(p, y)</tex>. <br>
}}
Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем.
Приведем так же альтернативую формулировку теоремы, и альтернативное (неконструктивное) доказательство.
{{Теорема
|id=th2
|about=о рекурсии
|statement= Пусть <tex>U</tex> {{---}} [[Диагональный_метод|универсальная функция]], <tex>h</tex> {{---}} всюду определённая [[Вычислимые_функции|вычислимая функция]]. Тогда найдется такое <tex>n</tex>, что <tex>U_n=U_{h(n)}</tex>.
|proof=
Начнём с доказательства леммы.
{{Лемма
|statement= Пусть на натуральных числах задано отношение эквивалентности <tex>\equiv</tex>. Тогда следующие два утверждения не могут быть выполнены одновременно: <br>
# Пусть <tex>f</tex> {{---}} вычислимая функция. Тогда существует всюду определённое вычислимое <tex>\equiv</tex> {{---}} продолжение <tex>g</tex> функции <tex>f</tex>, то есть такая <tex>g</tex>, что <tex>D(g)=N</tex> и <tex>\forall x</tex> такого, что <tex>f(x) \ne \perp</tex>, выполнено <tex>f(x) \equiv g(x)</tex>.
# Найдётся такая всюду определенная вычислимая <tex>h</tex>, что <tex>\forall n </tex> выполнено <tex>h(n) \not\equiv n</tex>.
|proof=
Приведем доказательство от противного. Пусть оба утверждения выполнены. <br>
Определим функцию <tex>f</tex> так: <tex>f(x)=U(x,x)</tex>. Заметим, что никакая всюду вычислимая функция не отличается от <tex>f</tex> всюду. <br> Согласно первому утверждению найдётся всюду определённое вычислимое <tex>\equiv</tex> {{---}} продолжение <tex>g</tex> функции <tex>f</tex>. <br> Определим функцию <tex>t</tex> так: <tex>t(x)=h(g(x))</tex>, где <tex>h</tex> {{---}} функция из второго утверждения. <br >Если <tex>f(x) \ne \perp</tex>, то <tex>f(x)=g(x) \ne h(g(x))=t(x)</tex>, то есть <tex>f(x) \ne t(x)</tex>. Если <tex>f(x)= \perp</tex>, то <tex>f(x) \ne t(x)</tex>, так как <tex>t</tex> всюду определена. Значит, <tex>f</tex> всюду отлична от <tex>t</tex>, получили противоречие.
}}
Теперь определим отношение <tex>\equiv</tex> так: <tex>x \equiv y \Leftrightarrow U_x = U_y</tex>. Покажем, что для него выполнено первое утверждение леммы. <br> Для заданной <tex>f</tex> определим <tex>V(n,x) = U(f(n), x)</tex>. <br> Так как <tex>U</tex> {{---}} универсальная функция, то найдётся такая всюду определенная вычислимая функция <tex>s</tex>, что <tex>V(n,x) = U(s(n), x)</tex>. <br> Тогда <tex>\forall x </tex> и <tex> n </tex> будет выполнено <tex>U(f(n), x) = U(s(n), x)</tex>. Значит, <tex>\forall n </tex> <tex> s(n) \equiv f(n)</tex>, то есть <tex>s</tex> {{---}} всюду определенное <tex>\equiv</tex> {{---}} продолжение <tex>f</tex>.
Значит, для нашего отношения эквивалентности второе утверждение леммы не верно, то есть для любого вычислимого всюду определенного <tex>h</tex> <tex> \exists n</tex> такое, что <tex>U_{h(n)} = U_n</tex>.
}}
==Пример использования==