Изменения

Перейти к: навигация, поиск

Лемма о разрастании для КС-грамматик

345 байт добавлено, 00:13, 24 января 2012
Нет описания правки
=== Пример доказательства неконтекстно-свободности языка с использованием леммы ===
Рассмотрим язык <tex>0^{n}1^{n}2^{n}</tex>. Покажем, что он не является контекстно-свободным. Для фиксированного <tex>n</tex> рассмотрим слово <tex>\omega=0^n 1^n 2^n</tex>. Пусть <tex>\omega</tex> разбили на <tex>u, v, x, y, z</tex> произвольным образом. Так как <tex>|vxy|\leqslant n</tex>, то в слове не содержится либо ни одного символа <tex>0</tex>, либо ни одного символа <tex>2</tex>. Для любого такого разбиения выберем <tex>k=2</tex> и получаем, количество символов 1 изменилось, а количество либо <tex>0</tex>, либо <tex>2</tex> осталось тем же. Очевидно, что такое слово не принадлежит рассмотренному языку. Значит, язык <tex>0^{n}1^{n}2^{n}</tex> не является контекстно-свободным.
 
==Источники==
* ''Хопкрофт Д., Мотвани Р., Ульман Д.'' — '''Введение в теорию автоматов, языков и вычислений''', 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
Анонимный участник

Навигация