==Тут только основные аксиомы(не относящиеся не к одной теории)==
=Аксиомы системы исчисления высказываний=
<tex>
(1) (\phi) \rightarrow ((\psi) \rightarrow (\phi))\\
(2) ((\phi) \rightarrow (\psi)) \rightarrow ((\phi) \rightarrow (\psi) \rightarrow (\pi)) \rightarrow ((\phi) \rightarrow (\pi))\\
(3) (\phi) \rightarrow (\psi) \rightarrow (\phi) \& (\psi)\\
(4) (\phi) \& (\psi) \rightarrow (\phi)\\
(5) (\phi) \& (\psi) \rightarrow (\psi)\\
(6) (\phi) \rightarrow (\phi) \vee (\psi)\\
(7) (\psi) \rightarrow (\phi) \vee (\psi)\\
(8) ((\phi) \rightarrow (\pi)) \rightarrow ((\psi) \rightarrow (\pi)) \rightarrow ((\phi) \vee (\psi) \rightarrow (\pi))\\
(9) ((\phi) \rightarrow (\psi)) \rightarrow ((\phi) \rightarrow \neg (\psi)) \rightarrow \neg (\phi)\\
(10) \neg \neg (\phi) \rightarrow (\phi)\\
</tex>
=Аксиомы предикатов=
<tex>
(11) \forall{x}(\psi) \rightarrow (\psi[x := \alpha])\\
(12) (\psi[x := \alpha]) \rightarrow \exists{x}(\psi) \\
</tex>