Изменения

Перейти к: навигация, поиск
Нет описания правки
|definition=
[[Основные определения теории графов|Граф]] называется '''произвольно вычерчиваемым из вершины <tex>v</tex>''' (англ. '''Arbitrarily traceable graph'''), если любая цепь с началом в вершине <tex>v</tex> может быть продолжена до эйлерового цикла графа <tex>G</tex>. <br>Любой произвольно вычерчиваемый из вершины <tex>v</tex> граф является [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеровым графом]]. }}
 
{{Теорема
|statement=
Неодноэлементный [[Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов|эйлеров граф]] <tex>G</tex> является произвольно вычерчиваемым из вершины <tex>v</tex> <tex>\Longleftrightarrow</tex> вершина <tex>v</tex> принадлежит всем циклам графа <tex>G</tex>.<br>
|proof=
[[Файл:ATG_part1.jpg|200px|right]]
<tex>\Longrightarrow</tex> Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br>
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). <tex>G_1</tex> {{---}} эйлеров, так как при удалении цикла все степени вершин остались четными. Значит в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>.
[[Файл:ATG_part2.jpg|200px|left]]
<tex>\Longleftarrow</tex> Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br>
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможно 2 случая:
 
1. если <tex>v = w</tex>, то <tex>P</tex> {{---}} цикл, значит степени всех вершин в <tex>G_1</tex> остались четными <tex>\Rightarrow</tex> <tex>G_1</tex> {{---}} эйлеров.<br>
2. если <tex>v \neq w</tex>, то так как <tex>G</tex> эйлеров граф <tex>\exists</tex> эйлеров путь <tex>(w,v) \in G_1</tex>.
 
Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам <tex>G_1</tex>.
 
В <tex>G</tex> <tex>\exists</tex> единственная компонента связности, содержащая ребра. При удалении <tex>P</tex> их количество не могло увеличится, иначе должен быть цикл, не содержащий <tex>v</tex>(смотри рисунок). Значит в <tex>G_1</tex> <tex>\exists</tex> единственная компонента связности содержащая ребра, причем <tex>G_1</tex> хотя бы полуэйлеров <tex>\Rightarrow</tex> в <tex>G_1</tex> <tex>\exists</tex> эйлерова цепь <tex>Q = (w,v)</tex> <tex>\Rightarrow</tex> <tex>P+Q</tex> эйлеров цикл в графе <tex>G</tex>.
}}
 
{|
|<tex>\Longrightarrow</tex> Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br>
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). <tex>G_1</tex> {{---}} эйлеров, так как при удалении цикла все степени вершин остались четными. Значит в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>.
|[[Файл:ATG_part1.jpg|200px|right]]
|-
|<tex>\Leftarrow</tex> Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br>
Рассмотрим произвольную цепь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. В <tex>G_1</tex> все степени вершин четные (если <tex>v = w</tex>) либо ровно 2 вершины имеют нечетную степень. Возьмем <tex>H_1</tex> <tex>-</tex> компонента связности из <tex>G_1</tex>, содержащая <tex>v</tex>. Все ребра <tex>G_1</tex> содержатся в <tex>H_1</tex>, иначе существует цикл, проходящий через какую либо вершину из <tex>P</tex> кроме <tex>v</tex> (следует из эйлеровости графа <tex>G</tex>) что невозможно по условию.<br>
<tex>H_1</tex> полуэйлеров граф содержащий все ребра <tex>G_1</tex>, значит в нем <tex>\exists</tex> эйлерова цепь <tex>Q=(w,v)</tex> также содержащая все ребра <tex>G_1</tex> <tex>\Rightarrow</tex> <tex>P+Q</tex> эйлеров цикл в графе <tex>G</tex>.
|[[Файл:ATG_part2.jpg|200px|right]]
|}
== Строение ==
43
правки

Навигация