Изменения

Перейти к: навигация, поиск

Участник:Muravyov

524 байта добавлено, 19:08, 2 мая 2012
Разбиение многоугольника на монотонные части
Суть данного метода заключается в том, чтобы разбить многоугольник на монотонные части, а затем триангулировать каждую из них.
==== Разбиение многоугольника на монотонные части ====
===== Идея Основные понятия =====
[[Файл:Split-merge.png|560px|thumb||Пять типов вершин]]
Если же <tex>r = p</tex> (случай '''(b)''' на рисунке), начём опять двигаться по сторонам <tex>P</tex> теперь уже вниз. Как и в предыдущем случае найдётся некоторая точка <tex>r'</tex>, которая будет результатом пересечения <tex>l</tex> и <tex>P</tex>. При этом <tex>r' \neq p</tex>, в противном случае <tex>l</tex> будет пересекать <tex>P</tex> только два раза, то есть <tex>P</tex> будет <tex>y</tex>-монотонным, что противоречит нашему предположению. Аналогично предыдущему случаю, выберем теперь самую низкую точку, которую мы достигли во время движения по сторонам P. Она будет merge вершиной.
}}
Таким образом, чтобы сделать многоугольник монотонным, нужно избавиться от split и merge вершин путём проведения непересекающихся дигоналей из таких вершин.
 ===== Алгоритм Идея=====Чтобы сделать многоугольник монотонным, нужно избавиться от split и merge вершин путём проведения непересекающихся дигоналей из таких вершин. 
Рассмотрим заметающую прямую <tex>l</tex>, перпендукулярную <tex>y</tex>-оси, будем перемещать её сверху вниз вдоль плоскости на которой лежит исходный многоугольник <tex>P</tex>. Будем останавливать её в каждой вершине многоугольника. Создадим приоритетную очередь <tex>Q</tex> из вершин, в которой приоритетом будет <tex>y</tex>-координата вершины. Если две вершины имеют одинаковые <tex>y</tex>-координаты, больший приоритет у левой.
В тот момент, когда на пути заметающей прямой встречается split или merge вершина её нужно соединить с вершиной, у которой расстояние до <tex>l</tex> минимально, при этом она должна лежать соответственно выше или ниже <tex>l</tex>. Рассмотрим каждый случай подробнее:
2) '''''Merge вершина'''''. В отличие от случая со split вершиной заранее вычислить указатель <tex>helper</tex> нельзя, поскольку merge вершина <tex>v_i</tex> должна быть соединена с вершиной, лежащей ниже заметающей прямой <tex>l</tex>. Для этого в <tex>helper</tex> левого относительно <tex>v_i</tex> ребра запишем саму <tex>v_i</tex>. Далее спускаем заметающую прямую вниз к следующей вершине <tex>v_m</tex>, обращаемся к <tex>helper</tex>'у её левого ребра. Проверяем, если там хранится merge вершина, строим диагональ <tex>v_{i}v_{m}</tex>. Последняя проверка осуществляется для любого типа вершины, кроме split, согласно п.1.
===== Корректность Структура =====В подходе, описанном выше, требуется находить пересечения заметающей прямой и левых ребёр многоугольника. Создадим BST <tex>T</tex>, в листьях которого будем хранить рёбра, такие, что внутренняя область многоугольника будет лежать справа от них самих. С каждым таким ребром будем хранить его <tex>helper</tex>.
==== Триангуляция монотонного треугольника ====
184
правки

Навигация