Изменения

Перейти к: навигация, поиск

Ортогональный поиск

369 байт добавлено, 08:04, 7 июня 2012
Нет описания правки
{{В разработке}}
== Простейший Одномерный случай ==
Пусть дана прямая с точками на ней и отрезок. Точки даны в отсортированном порядке. Необходимо указать, какие из изначальных точек лежат на этом отрезке.
[[Файл:Line_with_dots_and_segment.png‎]]
Задача тривиальна — нужно оставить только те точки, которые находятся между началом и концом отрезка.Данная На практике для быстрого осуществления запроса нужно хранить точки в отсортированном массиве и пользоваться двоичным поиском. В C++ данная задача решается с помощью функций из STL - upper_bound и lower_bound.
lower_bound возвращает итератор на первый элемент, больший либо равный данного. <br>
}
Алгоритм работает за <tex>O(\log n)</tex>.== Сбалансированное дерево поиска Двумерный случай ==
Переходим к двумерному случаю. Пусть дано некоторое множество точек на плоскости. Нам необходимо ответить, какие именно из них лежат в некотором заданном прямоугольнике.
Для этого возьмем любое сбалансированное дерево поиска и наполним его точками <tex>(x, y)</tex> из множества. В качестве ключа будет использоваться <tex>x</tex>-координата точки. Теперь модернизируем дерево: в каждой вершине дерева будем хранить отсортированный по <tex>y</tex>-координате массив точек, которые содержатся в соответствующем поддереве. <br>Рассмотрим на примере:<br>
В итоге, в множество мы добавим <tex>O(\log n)</tex> вершин и <tex>O(\log n)</tex> поддеревьев дерева поиска. Теперь нужно просеять полученное множество — извлечь из него те элементы, <tex>y</tex>-координата которых не лежит в интервале <tex>[y_{min}, y_{max}]</tex>. Для точек это сделать просто — нужно вручную проверить, лежит ли <tex>y</tex>-координата в нужном интервале. Для каждого из полученных поддеревьев обратимся к массиву содержащихся в нем точек и запустим от него приведенную выше функцию <tex>range{\_}search(y_{min}, y_{max})</tex>. Все полученные таким образом точки и будут составлять ответ.
<br>Каждая из функций <tex>range{\_}search(y_{min}, y_{max})</tex> будет работать в худшем случае за <tex>O(\log n)</tex>, отсюда получаем итоговое время выполнения запроса <tex>O(\log^2 n)</tex>. Что касается памяти, то в сбалансированном дереве поиска <tex>O(\log n)</tex> слоев, а каждый слой хранит массивы, содержащие в сумме ровно <tex>n</tex> точек, соответственно вся структура в целом занимает <tex>O(n\log n)</tex> памяти.
 
== Обобщение для p-мерного пространства ==
Такую структуру данных можно при необходимости обобщить на случай большей размерности. Пусть у нас есть множество точек из <tex>p</tex>-мерного пространства, каждая из которых представляется как <tex>n</tex> координатных чисел: <tex>(\xi_1, \xi_2, ... , \xi_p)</tex>. Тогда, строя дерево поиска по координате <tex>\xi_i</tex>, в каждой вершине будем хранить другое дерево поиска с ключом <tex>\xi_{i+1}</tex>, составленное из точек, лежащих в соответствующем поддереве. В дереве поиска, составленном по предпоследней координате <tex>\xi_{p-1}</tex>, уже не будет необходимости хранить в каждой вершине целое дерево, поскольку при переходе на последнюю координату <tex>\xi_{p}</tex> дальнейший поиск производиться не будет, поэтому в вершинах будем хранить массивы, так же, как и в двумерном случае. Оценим занимаемую память и время запроса: при добавлении следующей координаты асимптотика обеих величин умножается на <tex>\log n</tex>. Отсюда, получаем оценку <tex>O(\log^{p} n)</tex> на время запроса и <tex>O(n\log^{p-1} n)</tex> на занимаемую память.
Такой же результат можно получить с помощью [[Сжатое многомерное дерево отрезков|сжатого многомерного дерева отрезков]].
== Прошитые отсортированные массивы Ускорение запроса ==
Для ускорения запроса можно "прошить" дерево поиска по предпоследней координате, а именно: каждый элемент массива, сохраненного в какой-либо вершине, соединить с элементами массивов, сохраненных в вершинах-детях. Соединять будем по следующему принципу: элемент <tex>(x, y)</tex> массива-предка соединим с элементами <tex>upper\_bound(y)</tex> и <tex>lower\_bound(y)</tex> каждого массива-ребенка. Ниже представлен пример соединения корня с его левым сыном:<br>[[Файл:ortog_search_tree3.png]]<br>Для выполнения завершающей фазы поиска нам достаточно будет посчитать <tex>upper\_bound()</tex> и <tex>lower\_bound()</tex> только на массиве, привязанному к корню дерева. Для получения границ на других массивах можно будет просто спуститься по ссылкам. Заметим, что все вершины, к массивам которых нужно перейти, смежны с какой-либо из вершин путей <tex>v_l \to v_n</tex> или <tex>v_r \to v_n</tex>. Отсюда следует, что число спусков оценивается как <tex>O(length(v_l \to v_n) + length(v_r \to v_n)) = O(\log n)</tex>. <br>Таким образом, поиск теперь будет выполняться за <tex>O(\log^{p-1} n)</tex>, где <tex>p</tex> — размерность пространства.
<!--
== Квадро дерево ==
== Инкрементальное квадро дерево ==-->
172
правки

Навигация