Изменения

Перейти к: навигация, поиск

Сортировка Хана

1153 байта добавлено, 05:08, 12 июня 2012
Нет описания правки
Нам следует нумеровать уровни Э.П.дерева с корня, начиная с нуля. Рассмотрим спуск вниз на уровне <tex>s</tex>. Мы имеем <tex>t = n^{1 - (4/5)^s}</tex> наборов по <tex>n^{(4/5)^s}</tex> чисел в каждом. Так как каждый узел на данном уровне имеет <tex>p = n^{(1/5)(4/5)^s}</tex> детей, то на <tex>s + 1</tex> уровень мы опустим <tex>q = n^{(2/5)(4/5)^s}</tex> чисел для каждого набора или всего <tex>qt >= n^{2/5}</tex> чисел для всех наборов за один раз.
 
Спуск вниз можно рассматривать как сортировку <tex>q</tex> чисел в каждом наборе вместе с <tex>p</tex> числами <tex>a_{1}, a_{2}, ..., a_{p}</tex> из Э.П.дерева, так, что эти <tex>q</tex> чисел разделены в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ..., S_{p}</tex> таких, что <tex>S_{0} < </tex>{<tex>a_{1}</tex>} < ... < {<tex>a_{p}</tex>}<tex> < S_{p}</tex>.
 
Так как нам не надо полностью сортировать <tex>q</tex> чисел и <tex>q = p^2</tex>, есть возможность использовать лемму 2 для сортировки. Для этого нам надо неконсервативное преимущество которое мы получим ниже. Для этого используем линейную технику многократного деления (multi-dividing technique) чтобы добиться этого.
 
Для этого воспользуемся signature sorting. Адаптируем этот алгоритм для нас.
81
правка

Навигация