Изменения
→Факторгруппа
== Факторгруппа ==
Рассмотрим [[группа|группу]] <tex>G</tex> и ее нормальную [[Подгруппа|подгруппу]] <tex>H</tex>. Пусть <tex>G/H</tex> - множество [[Смежные классы|смежных классов]] <tex>G</tex> по <tex>H</tex>. Определим в <tex>G/H</tex> групповую операцию по следующему правилу: {{Утверждение|statement=произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть <tex>aH,bH\in G/H,\,a_1=a\cdot h_a\in aH,\,b_1=b\cdot h_b\in bH</tex>. Докажем, что <tex>abH=a_1 b_1 H</tex>. Достаточно показать, что <tex>a_1\cdot b_1 \in abH</tex>.}}
<tex>a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b=a\cdot b\cdot h\cdot h_b\in abH</tex>