Изменения

Перейти к: навигация, поиск

Правило Лаулера

25 байт добавлено, 19:14, 20 июня 2012
Формулировка
<wikitex>Существует простой жадный алгоритм решения этой задачи, открытый Лаулером. Он заключается в том, чтобы строить расписание с конца.
Пусть $N = \{1, \dots, n\}$ {{---}} множество работ, и $S \subseteq N$ {{---}} множество незашедуленных работ, которых ещё нет в расписании. Пусть также $p(S) = \sum_{j \in S}{p_j}$. Тогда правило Лаулера можно сформулировать следующим образом: взять работу $j \in S$, у которой нет детей в графе зависимостей и имеющую минимальное значение $f_j(p(S))$, и сделать ее последней среди работ из $S$.
</wikitex>
355
правок

Навигация