Изменения

Перейти к: навигация, поиск

Определение ряда Фурье

79 байт добавлено, 11:40, 23 июня 2012
м
Нет описания правки
Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье в индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек.
Карлсон Карлесон доказал, что для функций из <tex> L_2 </tex> (а такие функции автоматически <tex>\in L_1</tex>) ряд Фурье сходится почти всюду.
Если функция является <tex> 2T </tex>-периодической, то для нее соответствующей тригонометрической системой будет <tex> 1,\ \cos \frac{\pi}{T} x,\ldots \sin \frac{\pi}{T} x,\ \cos \frac{\pi}{T} nx,\ \sin \frac{\pi}{T} nx, \ldots (n = 1, 2 \ldots)</tex>.
223
правки

Навигация