63
правки
Изменения
→Теорема о существовании первообразных корней по модулям 4 \text{, }p^n \text{, }2 \cdot p^n
}}
===Теорема о существовании первообразных корней по модулям <mathtex>2\text{, }4 \text{, }p^n \text{, }2 \cdot p^n</mathtex>===
{{Теорема
|id=the
|statement= По модулям <mathtex>2\text{, }4 \text{, }p^n \text{, }2 \cdot p^n</mathtex> существуют первообразные корни(<tex>p</tex> — простое, нечетное).
|proof=
Легко проверить, что число 1 является первообразным корнем по модулю 2, а число 3 — по модулю 4. Далее будем считать, что <tex>p\in \mathbb{P}\text{, }p>2</tex>.
Сначала разберем случай <math>p^2</math>.
Пусть <tex>g</tex> — первообразный корень по модулю <tex>p\text{, }k=ord_{p^2}(g)</tex>. Тогда <tex>g^k=1(p^2)</tex>, следовательно <tex>g^k=1(p)</tex>, и значит <tex>k\vdots (p-1)</tex>. Также заметим, что <tex>\phi(p^2)=p(p-1)\vdots k</tex>. Получаем два случая — <tex>k=p-1</tex>, и <tex>k=p(p-1)</tex>. Во втором случае получается что <tex>g</tex> — первообразный корень по модулю <tex>p^2</tex>. Теперь рассмотрим первый случай: применим предыдущие рассуждения к числу <tex>g+p</tex> (это возможно, так как <tex>g+p\equiv g (p)</tex>). <tex>(g+p)^{p-1}=g^{p-1}+c^{1}_{p-1}g^{p-2}p+...</tex> — заметим, что все слагаемые, начиная с третьего содержат множитель <tex>p^2</tex> — поэтому обнуляются по модулю <tex>p^2</tex>. <tex>g^{p-1}=1(p^2)</tex>, а <tex>c^{1}_{p-1}g^{p-2}p=p(p-1)g^{p-2}\neq 0(p^2)</tex>, значит <tex>(g+p)^{p-1}\neq 1(p^2)</tex>, значит число <tex>k</tex>, для <tex>g+p</tex> не может быть равно <tex>p-1</tex>, тогда <tex>g+p</tex> — первеобразный корень по модулю <tex>p^2</tex>. Аналогичным образом, если имеется первообразный корень по модулю <tex>p^a</tex> отыскивается первообразный корень по модулю <tex>p^{a+1}</tex>.
Таким образом остается разобрать случай <tex>2\cdot p^n</tex>. Пусть <tex>g</tex> — первообразный корень по модулю <tex>p^n</tex>. Утверждается, что нечетное из <tex>g</tex> и <tex>g+p^n</tex> - первообразный корень по модулю <tex>2\cdot p^n</tex>. Переобозначим это нечетное число за <tex>g</tex>, для удобства. Пользуяся свойствами [[Функция Эйлера|функции Эйлера]], получим <tex>\phi (2\cdot p^n)=\phi(2)\cdot\phi(p^n)=\phi(p^n)<tex>. По определению <tex>g</tex> имеем <tex>ord_{p^n}(g)=\phi(p^n)</tex>, а так же <tex>(g;2\cdot p^n)=1</tex>. Отсюда очевидно получаем <tex>ord_{2\cdot p^n}(g)\geqslant ord_{p^n}(g)=\phi(p^n)=\phi(2 \cdot p^n)</tex>. Но порядок числа по любому взаимнопростому с этим числом модулю не может превосходить значения [[Функция Эйлера|функции Эйлера]] от этого модуля, то есть <tex>ord_{2\cdot p^n}(g)\leqslant \phi(2\cdot p^n)=\phi(p^n)</tex>. Получаем <tex>ord_{2 \cdot p^n}(g)=\phi(2 \cdot p^n)</tex>, что и требовалось доказать.
}}
[[Категория: Теория чисел]]