Изменения

Перейти к: навигация, поиск
6 Норма в линейном множестве, определение предела по норме, арифметика предела.: oops
# <tex>\alpha_n x_n \rightarrow \alpha x</tex>
# <tex>\|x_n\| \rightarrow \|x\|</tex>
 
|proof=
1) По определению предела в метрических пространствах, <tex>x_n \rightarrow x \iff \|x_n - x\| \rightarrow 0</tex>.
 
<tex>\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\| \rightarrow 0</tex> по арифметике числовых пределов. Но, поскольку <tex>\|(x_n + y_n) - (x + y)\| \ge 0</tex> по определению нормы, то по принципу сжатой переменной <tex>x_n + y_n \rightarrow x + y</tex>.
 
2) Пусть <tex> \alpha_n = \alpha + \Delta \alpha_n </tex>, <tex> x_n = x + \Delta x_n </tex>; <tex>\Delta \alpha_n, \Delta x_n</tex> стремятся к нулю при <tex> n \rightarrow \infty </tex>.
 
Тогда <tex> \| \alpha_n x_n - \alpha x \| = \| (\alpha + \Delta \alpha_n) (x + \Delta x_n) - \alpha x \| = </tex>
 
<tex> = \| \alpha \Delta x_n + \Delta \alpha_n x + \Delta \alpha_n \Delta x_n \| \le \| \alpha \Delta x_n \| + \| \Delta \alpha_n x \| + \| \Delta \alpha_n \Delta x_n \| \rightarrow 0</tex>.
 
3) <tex>\|x_n\| = \|x + (x_n - x)\| \le \|x\| + \|x_n - x\| \Rightarrow \|x_n\| - \|x\| \le \|x_n - x\| </tex>
 
Аналогично, <tex> \|x\| - \|x_n\| \le \|x_n - x\| </tex>.
 
Значит, <tex> \left|\|x_n\| - \|x\|\right| \le \|x_n - x\| </tex>, при <tex> \|x_n - x\| \rightarrow 0 \quad \left|\|x_n\| - \|x\|\right| \rightarrow 0</tex>, что и требовалось доказать.
}}
315
правок

Навигация