Изменения

Перейти к: навигация, поиск

Теорема Брукса

33 байта убрано, 20:55, 13 января 2013
Нет описания правки
##* <tex>\exists p \in G_2: pu \in E \land pv \in E </tex>, тогда мы можем правильно раскрасить <tex>G_2</tex>, где <tex>deg\ u = deg\ v = 1</tex>, в не более чем <tex> \Delta </tex> цветов так, чтобы вершины <tex>u,v</tex> были одного цвета.Следовательно,можно покрасить граф <tex>G</tex> в не более чем <tex>\Delta</tex> цветов.
##*<tex>\exists u_1,v_1 \in G_2: uu_1 \in E \land vv_1 \in E \land u_1 \neq v_1 </tex>, тогда вместо вершин <tex>\{u,v\}</tex> рассмотрим вершины <tex>\{u,v_1\}</tex>.Заметим, что при удалении этих вершин граф потеряет связность и между ними нет ребра,то есть для этой пары вершин можно провести рассуждения аналогичные тем которые проводились для вершин <tex> v,u</tex>.Из чего, прямым образом вытекает, что граф <tex> G</tex> можно правильно раскрасить в не более чем не более чем <tex>\Delta </tex> цветов.
#[[Файл:Brooks_2.png‎|300px|thumb|Алгоритм расскраски для 3ого случая на 6ом шаге]]Если вышеописанные случаи не подходят, тогда рассмотрим <tex>w \in V : deg\ w = \Delta</tex>. У вершины <tex>w</tex> должны существовать две соседние вершины <tex>u,v : uv \notin E </tex>, в противном случаи <tex>G = K_n</tex>.Пусть <tex>G_- = G - u - v </tex>. Заметим, что <tex>G_-</tex> связный граф, запустим для <tex>G_-</tex> алгоритм [[Обхода в ширину| обхода в ширину]] из вершины <tex>w</tex>. Пронумеруем вершины <tex>v_1,...,v_{n-2},</tex> где <tex>v_i</tex> вершина рассмотренная на <tex>i</tex>ом шаге алгоритма bfs.Теперь пусть <tex> v_{n-1} = v</tex>,и <tex>v_n = u</tex>. Покрасим <tex>v_n,v_{n-1}</tex> в один цвет, далее начнем красить вершины в обратном порядке начиная с <tex>v_{n-2}</tex> в обратном порядке в один из <tex>\Delta</tex> цветов так, чтобы никакое ребро графа не соединяло вершины одного цвета.Заметим, что так всегда можно сделать, поскольку на <tex> i</tex>ом шаге покраски,где <tex>i \neq n</tex>, для вершины <tex> v_{n - i+1}</tex> есть не более <tex>\Delta(G) - 1</tex> уже покрашенных соседей, следовательно вершину <tex> v_{n-i+1}</tex> можно покрасить по крайней мере в один из свободных цветов.Вершину <tex>w</tex>,мы тоже сможем правильно раскрасить в не более чем один из <tex>\Delta</tex> цветов потому, что ее <tex>\Delta</tex> соседей покрашено в не более чем <tex>\Delta - 1</tex> цветов. Таким образом граф <tex> G</tex> можно правильно раскрасить в не более чем не более чем <tex>\Delta</tex> цветов.
}}
50
правок

Навигация