Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан3сем

57 байт добавлено, 11:50, 14 января 2013
Теорема о непрерывно дифференцируемых отображениях
<tex> II \Rightarrow I </tex>
<tex> F' </tex> — непрерывна. <tex> e_1 \ldots e_m </tex> — нормированный базис <tex>\mathbb{R}^m</tex>
<tex> F'(x)e_i = </tex><tex> \begin{pmatrix} \frac{\partial f_i}{\partial x_1}(x) \\ \ldots \\ \frac{\partial f_i}{\partial x_n}(x) \end{pmatrix}; </tex> <tex> \begin{matrix} |F'(x)e_i| \le ||F'(x)|| \cdot 1 \\ |\frac{\partial f_i}{\partial x_j}(x)| \le |F'(x)e_i| \le ||F'(x)|| \end{matrix} </tex>
Точно также: <tex> |\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})| \le ||F'(x) - F'(\overline{x})|| </tex>
Анонимный участник

Навигация