119
правок
Изменения
м
→Критерий обратимости матрицы
{{Теорема
|statement=
Квадратная матрица <tex>A</tex> обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть <tex>\det A \neq 0</tex>.
|proof =определитель НЕ равен нулю
*Если матрица <tex>A</tex> обратима, то <tex>AB = E</tex> для некоторой матрицы <tex>B</tex>. Тогда, если квадратные матрицы одного и того же порядка, то <tex>\det AB = \det A \cdot \det B</tex>: