73
правки
Изменения
добавлены англоязычные термины.
{{Определение
|definition=
'''Композицией''' (произведением, суперпозицией) бинарных отношений (англ. ''composition of binary relations'') <tex>R\subseteq A\times B</tex> и <tex>S\subseteq B\times C</tex> называется такое отношение <tex> (R \circ S) \subseteq A\times C</tex>, что:
<tex>\forall a \in A, c \in C : a (R \circ S) c \iff \exists b \in B : (a R b) \wedge (b S c) </tex>.
{{Определение
|definition=
Отношение <tex>R^{-1} \subseteq B\times A</tex> называют '''обратным''' (англ. ''inverse relation'') для отношения <tex> R \subseteq A\times B</tex>, если:
<tex> aR^{-1}b \iff bRa </tex>