Изменения

Перейти к: навигация, поиск

Многочлен Татта

8 байт убрано, 16:07, 16 декабря 2013
Существование и единственность
u^{\rho^{*}_{1} (A) + 1}v^{\overline {\rho _1}(A)} + u^{\rho ^{*}_{1} (A)}v^{\overline{\rho _{1}}(A)} =
(u + 1)R_{G \backslash e}(u, v) </tex>. Это второе соотношение Татта.
# AAA.# Наконец, пусть <tex> e </tex> не мост и не петля. Тогда <tex> u^{\rho^* (A)}v^{\overline {\rho}(A)} + u^{\rho^* (A')}v^{\overline {\rho}(A')} = u^{\rho ^{*}_{2} (A)}v^{\overline {\rho _2}(A)} + u^{\rho ^{*}_{1} (A)}v^{\overline {\rho _1}(A)} </tex>, откуда <tex> R_{G}(u, v) = \sum\limits_{A \subset {E \backslash {e}}} u^{\rho ^{*}_{2} (A)}v^{\overline {\rho _2}(A)} + \sum\limits_{A \subset {E \backslash {e}}} u^{\rho ^{*}_{1} (A)}v^{\overline {\rho _1}(A)} = R_{G \backslash e}(u, v) + R_{G / e}(u, v) </tex>. Это третье соотношение Татта.<br>
Таким образом, многочлен <tex> R_{G}(u + 1, v + 1) </tex> удовлетворяет определению многочлена Татта, что и требовалось.
}}
Анонимный участник

Навигация