Изменения

Перейти к: навигация, поиск

Участница:Katyatitkova/Матан

5 байт добавлено, 12:01, 26 января 2014
Скалярное произведение
Пусть <tex dpi=130> X </tex> — векторное пространство над <tex dpi=130> \mathbb{R} </tex> или <tex dpi=130> \mathbb{C} </tex>. Функция <tex dpi=130> \varphi: X \times X \to \mathbb{R} </tex> (или <tex dpi=130> \mathbb{C} </tex> называется '''скалярным произведением''' в <tex dpi=130> X </tex> (обозначение: <tex dpi=130> \varphi (x, y) = \left ( x, y \right ) </tex>, если она удовлетворяет следующим свойствам: <br>
# Линейность по первому аргументу: для всех <tex dpi=130> x_1, x_2, y \in X </tex> и всех <tex dpi=130> \lambda, \mu \in \mathbb{R} </tex> (или <tex dpi=130> \mathbb{C} </tex>) <tex dpi=130> \left ( \lambda x_1 + \mu x_2, y \right ) = \lambda \cdot \left ( x_1, y \right ) + \mu \cdot \left ( x_2, y \right ) </tex> <br>
# Эрмитовская симметричность: <tex dpi=130> \left ( y, x \right ) = \baroverline{\left ( x, y \right )} </tex> (в вещественном случае черту можно опустить) <br>
# Положительная определённость: <tex dpi=130> \left ( x, x \right ) \geqslant 0; \ \left ( x, x \right ) = 0 \Longleftrightarrow x = \theta </tex>
}}
Анонимный участник

Навигация