308
правок
Изменения
Нет описания правки
# Следует из <tex> | \mathcal B | = | \mathcal B^* | </tex>.
# Предположим <tex>\overline B_1, \overline B_2 \in \mathcal B^*, \ \overline B_1 \ne \overline B_2, \ \overline {B_1} \subseteq \overline {B_2} </tex>. Тогда по второй аксиоме баз для <tex> B_{1,2} \ (B_1, B_2 \in \mathcal B): </tex> <tex> \overline {B_1} \subseteq \overline {B_2} \Rightarrow B_2 \subseteq B_1 \Rightarrow B_1 = B_2 \Rightarrow \overline {B_1} = \overline {B_2} </tex> {{---}} противоречие.
# Пусть <tex> \overline{B_1}, \overline {B_2} \in \mathcal B^*</tex> и <tex> p\in \overline{B_1}.</tex> Так как <tex> p\notin {B_1},</tex> то в <tex> B_1 \cup p </tex> имеется точно один цикл <tex>C</tex>(в противном случае для каких-нибудь двух циклов верно <tex> p \in C_1, C_2 </tex>, и по [[Теорема_о_циклах | 3-му свойству циклов]] <tex> \exists C_3 </tex> {{---}} цикл такой, что <tex> C_3 \subseteq (C_1 \cup C_2) \setminus p </tex>, но кроме того выполнено <tex> (C_1 \cup C_2) \setminus p \subseteq B_1 </tex> {{---}} противоречие). Поскольку цикл <tex>C</tex> не лежит в <tex>B_2</tex>, существует <tex>q \in C \cap \overline {B_2}.</tex> Множество <tex>(B_1 \cup p) \setminus q</tex> не содержит циклов, т.к. разрушен единственный цикл. Поэтому оно независимо и <tex>|(B_1 \cup p) \setminus q| = |B_1|.</tex> Следовательно, <tex> (B_1 \cup p) \setminus q</tex> {{---}} база. Тогда <tex>\overline {(B_1 \cup p \setminus q)} = \overline {(B_1 \cup p)} \cup q = (\overline {B_1} \setminus p) \cup q,</tex> где <tex>q \in \overline {B_2}.</tex> То есть выполняется третья аксиома баз.
}}