175
правок
Изменения
→Свойства функции Эйлера
<center><tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>. </center>
** '''Доказательство:''' <tex> \varphi (p) = p-1 </tex>, p {{---}} [[Простые числа|простое]], несложно понять, что <tex> \varphi (p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}</tex>. Отсюда по [[Мультипликативность функции, свертка Дирихле|мультипликативности]] <tex> \varphi (a) = (p_1^{\alpha_1} - p_1^{\alpha_1-1}) (p_2^{\alpha_2} - p_2^{\alpha_2-1}) \ldots (p_k^{\alpha_k} - p_k^{\alpha_k-1})</tex>, выносим из каждой скобки <tex> p_i^{\alpha_i}</tex>, получаем <tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>.
** '''Доказательство:''' Пусть <tex> x </tex> пробегает числа <tex> 0,1,2,\ldots,a-1</tex>, положим <tex> \sigma_x = (a, x)</tex> {{---}} [[Наибольший общий делитель|НОД]]. Тогда <tex> \varphi(a) </tex> есть число значений <tex> \sigma_x </tex>, равных единице. Возьмем функцию, которая равна единице, если <tex> \sigma_x = 1</tex>, и равна нулю в остальных случаях. Вот такая функция : <tex>\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}</tex>, где <tex> \mu(a) </tex> {{---}} [[Функция Мебиуса|функция Мебиуса]]. Отсюда <tex> \varphi(a) = \sum_{0 \le x \le a-1}(\sum_{d | a} \mu(d))</tex>. Поскольку справа сумма в скобках берется по всем делителям '''d''' числа <tex> \sigma_x = ( x , a )</tex>, то '''d''' делит '''x''' и '''a''' . Значит в первой сумме справа в суммировании участвуют только те '''x''' , которые кратны '''d''' . Таких '''x''' среди чисел <tex> 0,1,2,\ldots,a-1</tex> ровно <tex> \frac{a}{d} </tex> штук. Получается, что <tex> \varphi(a) = \sum_{d | a} \frac{a}{d}\mu(d) = a\sum_{d | a} \frac{\mu(d)}{d} = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>.