97
правок
Изменения
initial
== Многопоточная сортировка слиянием ==
Благодаря тому, что сортировка слиянием построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков.
==Сортировка с однопоточным слиянием==
Внесем в алгоритм сортировки слиянием следующую модификацию: будем сортировать левую и правую части массива параллельно.
function mergeSortMT(array, left, right):
mid = (left + right) / 2
'''spawn''' mergeSortMT(array, left, mid)
mergeSortMT(array, mid + 1, right)
'''sync'''
merge(array, left, mid, right)
В данном алгоритме оператор <tex>\mathrm {\bf {spawn}}</tex> запускает новый поток, а оператор <tex>\mathrm {\bf {sync}}</tex> ожидает завершения этого потока. Функция <tex>\mathrm {merge}</tex> аналогична одноименной функции из раздела [[Сортировка слиянием#.D0.A1.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5_.D0.B4.D0.B2.D1.83.D1.85_.D0.BC.D0.B0.D1.81.D1.81.D0.B8.D0.B2.D0.BE.D0.B2|слияние двух массивов]].<br>
Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: <tex dpi="120">T(n) = T(\frac {n}{2}) + \Theta(n) = \Theta(n)</tex>. Данная асимптотика достигается при возможности запускать неограниченное количество потоков независимо друг от друга.<br>
==Многопоточное слияние==
Как видно из оценки первого алгоритма, слияние является его узким местом. Попытаемся распараллелить слияние, для чего рассмотрим алгоритм рекурсивного слияния массивов <tex dpi="120">T[left_{1} \dots right_{1}]</tex> и <tex dpi="120">T[left_{2} \dots right_{2}]</tex> в массив <tex dpi="120">A[left_{3} \dots right_{3}]</tex>:
[[Файл:MergeMT.png|430px|thumb|Слияние массивов]]
# Убедимся, что размер <tex dpi="120">T[left_{1} \dots right_{1}]</tex> больше либо равен размеру <tex dpi="120">T[left_{2} \dots right_{2}]</tex>
# Возьмем <tex dpi="120">x = T[mid_{1}]</tex> - середину первого массива (<tex dpi="120">x</tex> также является и медианой этого массива)
# При помощи [[Целочисленный двоичный поиск|бинарного поиска]] найдем <tex dpi="120">mid_{2}</tex> такое, что <tex dpi="120">\forall y \in T[left_{2} \dots mid_{2} - 1]: y < x</tex>
# <tex dpi="120">mid_{3} = left_{3} + (mid_{1} - left_{1}) + (mid_{2} - left_{2})</tex>
# <tex dpi="120">A[mid_{3}] = x</tex>
# Сольем <tex dpi="120">T[right_{1} \dots mid_{1} - 1]</tex> и <tex dpi="120">T[right_{2} \dots mid_{2}]</tex> в <tex dpi="120">A[right_{3} \dots mid_{3} - 1]</tex>
# Сольем <tex dpi="120">T[mid_{1} + 1 \dots right_{1}]</tex> и <tex dpi="120">T[mid_{2} \dots right_{2}]</tex> в <tex dpi="120">A[mid_{3} + 1 \dots right_{3}]</tex>
===Реализация===
// если <tex dpi="120">right \leqslant left</tex> возвращает <tex dpi="120">left</tex>
// если <tex dpi="120">x \leqslant T[left]</tex>, возвращает <tex dpi="120">left</tex>
// иначе возвращает наибольший индекс <tex dpi="120">i</tex> из отрезка <tex dpi="120">[left, right]</tex> такой, что <tex dpi="120">array[i - 1] < x</tex>
integer binarySearch(x, array, left, right)
// слияние <tex dpi="120">T[left_{1} \dots right_{1}]</tex> и <tex dpi="120">T[left_{2} \dots right_{2}]</tex> в <tex dpi="120">A[left_{3} \dots right_{1} - left_{1} + right_{2} - left_{2}]</tex>
function mergeMT(T, left<tex dpi="120">_{1}</tex>, right<tex dpi="120">_{1}</tex>, left<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>, A, left<tex dpi="120">_{3}</tex>):
n<tex dpi="120">_{1}</tex> = right<tex dpi="120">_{1}</tex> - left<tex dpi="120">_{1}</tex> + 1
n<tex dpi="120">_{2}</tex> = right<tex dpi="120">_{2}</tex> - left<tex dpi="120">_{2}</tex> + 1
'''if''' n<tex dpi="120">_{1}</tex> < n<tex dpi="120">_{2}</tex>
swap(left<tex dpi="120">_{1}</tex>, left<tex dpi="120">_{2}</tex>)
swap(right<tex dpi="120">_{1}</tex>, right<tex dpi="120">_{2}</tex>)
swap(n<tex dpi="120">_{1}</tex>, n<tex dpi="120">_{2}</tex>)
'''if''' n<tex dpi="120">_{1}</tex> == 0
'''return'''
'''else'''
mid<tex dpi="120">_{1}</tex> = (left<tex dpi="120">_{1}</tex> + right<tex dpi="120">_{1}</tex>) / 2
mid<tex dpi="120">_{2}</tex> = binarySearch(T[mid<tex dpi="120">_{1}</tex>], T, left<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>)
mid<tex dpi="120">_{3}</tex> = left<tex dpi="120">_{3}</tex> + (mid<tex dpi="120">_{1}</tex> - left<tex dpi="120">_{1}</tex>) + (mid<tex dpi="120">_{2}</tex> - left<tex dpi="120">_{2}</tex>)
A[mid<tex dpi="120">_{3}</tex>] = T[mid<tex dpi="120">_{1}</tex>]
'''spawn''' mergeMT(T, left<tex dpi="120">_{1}</tex>, mid<tex dpi="120">_{1}</tex> - 1, left<tex dpi="120">_{2}</tex>, mid<tex dpi="120">_{2}</tex> - 1, A, left<tex dpi="120">_{3}</tex>)
mergeMT(T, mid<tex dpi="120">_{1}</tex> + 1, right<tex dpi="120">_{1}</tex>, mid<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>, A, mid<tex dpi="120">_{3}</tex> + 1)
'''sync'''
Оба массива содержат <tex dpi="120">n_{1} + n_{2} = n</tex> элементов. К моменту рекурсивных вызовов <tex dpi="120">n_{2} \leqslant n_{1}</tex>, значит,<br>
<tex dpi="135">n_{2} = 2 \cdot \frac{n_{2}}{2} \leqslant \frac{(n_{1} + n_{2})}{2} = \frac{n}{2}</tex>.<br>
В худшем случае один из двух рекурсивных вызовов сольет <tex dpi="135">\frac{n_{1}}{2}</tex> элементов <tex dpi="120">T[left_{1} \dots right_{1}]</tex> с <tex dpi="120">n_{2}</tex> элементами <tex dpi="120">T[left_{2} \dots right_{2}]</tex> и тогда количество элементов первых двух массивов в рекурсивном вызове будет равно<br>
<tex dpi="135">\frac{n_{1}}{2} + n_{2} \leqslant \frac{n_{1}}{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2} = \frac{(n_{1} + n_{2})}{2} + \frac{n_{2}}{2} \leqslant \frac{n}{2} + \frac{n}{4} = \frac{3}{4}n</tex>.<br>Асимптотика каждого вызова функции - <tex dpi="120">\Theta(\log n)</tex>, т.е. время, затрачиваемое на бинарный поиск. Так как рекурсивные вызовы функции выполняются параллельно, а потоки при оценке независимы, время их выполнения будет равно времени выполнения самого долгого вызова. В худшем случае это <tex dpi="120">T(\frac{3}{4}n)</tex>. Тогда получим оценку сверху<br><tex dpi="130">T_{\mathrm {merge}}(n) = T_{\mathrm {merge}}(\frac{3}{4}n) + \Theta(\log n) = \Theta(\log^2 n)</tex>
==Сортировка с многопоточным слиянием==
Приведем псевдокод алгоритма, использующего слияние из предыдущего раздела, сортирующего элементы <tex dpi="120">A[leftA \dots rightA]</tex> и помещающего отсортированный массив в <tex dpi="120">B[leftB \dots leftB + rightA - leftA]</tex>
function mergeSortMT2(A, leftA, rightA, B, leftB):
n = r - p + 1
'''if''' n == 1
B[leftB] = A[leftA]
'''else'''
создадим новый массив T[1 <tex dpi="120">\dots</tex> n]
mid = (leftA + rightA) / 2
newMid = mid - leftA + 1
'''spawn''' mergeSortMT2(A, leftA, mid, T, 1)
mergeSortMT2(A, mid + 1, rightA, T, newMid + 1)
'''sync'''
mergeMT(T, 1, newMid, newMid + 1, n, B, leftB)
Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов <tex dpi="130">T_{\mathrm {mergeSort}}(n) = T_{\mathrm {mergeSort}}(\frac{n}{2}) + T_{\mathrm {merge}}(n) = T_{\mathrm {mergeSort}}(\frac{n}{2}) + \Theta(\log^2 n) = \Theta(\log^3 n)</tex>.
==Оценка при фиксированном числе потоков==
Очевидно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как <tex dpi="120">N_{ind}</tex>. Допустим, <tex dpi="120">n</tex> много больше <tex dpi="120">N_{ind}</tex>, что в общем случае верно для ПК и достаточно больших объемов данных. Оценим приведенные выше алгоритмы с учетом наложенных ограничений и допущений:<br>
::[[#.D0.A1.D0.BE.D1.80.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0_.D1.81_.D0.BE.D0.B4.D0.BD.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.BC_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5.D0.BC|Сортировка с однопоточным слиянием]] будет иметь асимптотику <tex dpi="135">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}} + n) = \Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex>:
::::<tex dpi="135">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex> операций нужно на последовательную сортировку массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex>.
::::<tex dpi="135">\Theta(n)</tex> необходимо на последовательное слияние.
::[[#.D0.9C.D0.BD.D0.BE.D0.B3.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D0.BE.D0.B5_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5|Многопоточное слияние]] будет работать за <tex dpi="135">\Theta((\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} + \log n \cdot min(N_{ind}, \log n)=\Theta((\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2})</tex>:
::::Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на <tex dpi="110">min(N_{ind}, \log n)</tex> уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за <tex dpi="135">\Theta(\log n)</tex>
::::Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна
::::<tex dpi="135">T_{\mathrm {merge}}'(n) = 2T_{\mathrm {merge}}'(\frac {3}{4}n) + \Theta(\log n) = \Theta(n^{\log_{\frac{4}{3}}2})</tex>
::Оценим [[#.D0.A1.D0.BE.D1.80.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0_.D1.81_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.BC_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5.D0.BC|сортировку с многопоточным слиянием]] снизу:
::::Части массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex> гарантированно будут сортироваться последовательно, т.к. только алгоритм сортировки запустит к моменту вызова <tex>\mathrm {mergeSortMT2} </tex> от массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex> число потоков, равное <tex dpi="135">N_{ind}</tex>. Тогда по основной теореме рекуррентных соотношений:
::::<tex dpi="135">T_{\mathrm {mergeSort}}'(\frac{n}{N_{ind}}) = 2T_{\mathrm {mergeSort}}'(\frac{n}{2N_{ind}}) + \Theta(\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} = \Theta(\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2}</tex>
Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет <tex dpi="120">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex>.
==Источники информации==
#Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. {{---}} Introduction to Algorithms, Third Edition
Благодаря тому, что сортировка слиянием построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков.
==Сортировка с однопоточным слиянием==
Внесем в алгоритм сортировки слиянием следующую модификацию: будем сортировать левую и правую части массива параллельно.
function mergeSortMT(array, left, right):
mid = (left + right) / 2
'''spawn''' mergeSortMT(array, left, mid)
mergeSortMT(array, mid + 1, right)
'''sync'''
merge(array, left, mid, right)
В данном алгоритме оператор <tex>\mathrm {\bf {spawn}}</tex> запускает новый поток, а оператор <tex>\mathrm {\bf {sync}}</tex> ожидает завершения этого потока. Функция <tex>\mathrm {merge}</tex> аналогична одноименной функции из раздела [[Сортировка слиянием#.D0.A1.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5_.D0.B4.D0.B2.D1.83.D1.85_.D0.BC.D0.B0.D1.81.D1.81.D0.B8.D0.B2.D0.BE.D0.B2|слияние двух массивов]].<br>
Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: <tex dpi="120">T(n) = T(\frac {n}{2}) + \Theta(n) = \Theta(n)</tex>. Данная асимптотика достигается при возможности запускать неограниченное количество потоков независимо друг от друга.<br>
==Многопоточное слияние==
Как видно из оценки первого алгоритма, слияние является его узким местом. Попытаемся распараллелить слияние, для чего рассмотрим алгоритм рекурсивного слияния массивов <tex dpi="120">T[left_{1} \dots right_{1}]</tex> и <tex dpi="120">T[left_{2} \dots right_{2}]</tex> в массив <tex dpi="120">A[left_{3} \dots right_{3}]</tex>:
[[Файл:MergeMT.png|430px|thumb|Слияние массивов]]
# Убедимся, что размер <tex dpi="120">T[left_{1} \dots right_{1}]</tex> больше либо равен размеру <tex dpi="120">T[left_{2} \dots right_{2}]</tex>
# Возьмем <tex dpi="120">x = T[mid_{1}]</tex> - середину первого массива (<tex dpi="120">x</tex> также является и медианой этого массива)
# При помощи [[Целочисленный двоичный поиск|бинарного поиска]] найдем <tex dpi="120">mid_{2}</tex> такое, что <tex dpi="120">\forall y \in T[left_{2} \dots mid_{2} - 1]: y < x</tex>
# <tex dpi="120">mid_{3} = left_{3} + (mid_{1} - left_{1}) + (mid_{2} - left_{2})</tex>
# <tex dpi="120">A[mid_{3}] = x</tex>
# Сольем <tex dpi="120">T[right_{1} \dots mid_{1} - 1]</tex> и <tex dpi="120">T[right_{2} \dots mid_{2}]</tex> в <tex dpi="120">A[right_{3} \dots mid_{3} - 1]</tex>
# Сольем <tex dpi="120">T[mid_{1} + 1 \dots right_{1}]</tex> и <tex dpi="120">T[mid_{2} \dots right_{2}]</tex> в <tex dpi="120">A[mid_{3} + 1 \dots right_{3}]</tex>
===Реализация===
// если <tex dpi="120">right \leqslant left</tex> возвращает <tex dpi="120">left</tex>
// если <tex dpi="120">x \leqslant T[left]</tex>, возвращает <tex dpi="120">left</tex>
// иначе возвращает наибольший индекс <tex dpi="120">i</tex> из отрезка <tex dpi="120">[left, right]</tex> такой, что <tex dpi="120">array[i - 1] < x</tex>
integer binarySearch(x, array, left, right)
// слияние <tex dpi="120">T[left_{1} \dots right_{1}]</tex> и <tex dpi="120">T[left_{2} \dots right_{2}]</tex> в <tex dpi="120">A[left_{3} \dots right_{1} - left_{1} + right_{2} - left_{2}]</tex>
function mergeMT(T, left<tex dpi="120">_{1}</tex>, right<tex dpi="120">_{1}</tex>, left<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>, A, left<tex dpi="120">_{3}</tex>):
n<tex dpi="120">_{1}</tex> = right<tex dpi="120">_{1}</tex> - left<tex dpi="120">_{1}</tex> + 1
n<tex dpi="120">_{2}</tex> = right<tex dpi="120">_{2}</tex> - left<tex dpi="120">_{2}</tex> + 1
'''if''' n<tex dpi="120">_{1}</tex> < n<tex dpi="120">_{2}</tex>
swap(left<tex dpi="120">_{1}</tex>, left<tex dpi="120">_{2}</tex>)
swap(right<tex dpi="120">_{1}</tex>, right<tex dpi="120">_{2}</tex>)
swap(n<tex dpi="120">_{1}</tex>, n<tex dpi="120">_{2}</tex>)
'''if''' n<tex dpi="120">_{1}</tex> == 0
'''return'''
'''else'''
mid<tex dpi="120">_{1}</tex> = (left<tex dpi="120">_{1}</tex> + right<tex dpi="120">_{1}</tex>) / 2
mid<tex dpi="120">_{2}</tex> = binarySearch(T[mid<tex dpi="120">_{1}</tex>], T, left<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>)
mid<tex dpi="120">_{3}</tex> = left<tex dpi="120">_{3}</tex> + (mid<tex dpi="120">_{1}</tex> - left<tex dpi="120">_{1}</tex>) + (mid<tex dpi="120">_{2}</tex> - left<tex dpi="120">_{2}</tex>)
A[mid<tex dpi="120">_{3}</tex>] = T[mid<tex dpi="120">_{1}</tex>]
'''spawn''' mergeMT(T, left<tex dpi="120">_{1}</tex>, mid<tex dpi="120">_{1}</tex> - 1, left<tex dpi="120">_{2}</tex>, mid<tex dpi="120">_{2}</tex> - 1, A, left<tex dpi="120">_{3}</tex>)
mergeMT(T, mid<tex dpi="120">_{1}</tex> + 1, right<tex dpi="120">_{1}</tex>, mid<tex dpi="120">_{2}</tex>, right<tex dpi="120">_{2}</tex>, A, mid<tex dpi="120">_{3}</tex> + 1)
'''sync'''
Оба массива содержат <tex dpi="120">n_{1} + n_{2} = n</tex> элементов. К моменту рекурсивных вызовов <tex dpi="120">n_{2} \leqslant n_{1}</tex>, значит,<br>
<tex dpi="135">n_{2} = 2 \cdot \frac{n_{2}}{2} \leqslant \frac{(n_{1} + n_{2})}{2} = \frac{n}{2}</tex>.<br>
В худшем случае один из двух рекурсивных вызовов сольет <tex dpi="135">\frac{n_{1}}{2}</tex> элементов <tex dpi="120">T[left_{1} \dots right_{1}]</tex> с <tex dpi="120">n_{2}</tex> элементами <tex dpi="120">T[left_{2} \dots right_{2}]</tex> и тогда количество элементов первых двух массивов в рекурсивном вызове будет равно<br>
<tex dpi="135">\frac{n_{1}}{2} + n_{2} \leqslant \frac{n_{1}}{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2} = \frac{(n_{1} + n_{2})}{2} + \frac{n_{2}}{2} \leqslant \frac{n}{2} + \frac{n}{4} = \frac{3}{4}n</tex>.<br>Асимптотика каждого вызова функции - <tex dpi="120">\Theta(\log n)</tex>, т.е. время, затрачиваемое на бинарный поиск. Так как рекурсивные вызовы функции выполняются параллельно, а потоки при оценке независимы, время их выполнения будет равно времени выполнения самого долгого вызова. В худшем случае это <tex dpi="120">T(\frac{3}{4}n)</tex>. Тогда получим оценку сверху<br><tex dpi="130">T_{\mathrm {merge}}(n) = T_{\mathrm {merge}}(\frac{3}{4}n) + \Theta(\log n) = \Theta(\log^2 n)</tex>
==Сортировка с многопоточным слиянием==
Приведем псевдокод алгоритма, использующего слияние из предыдущего раздела, сортирующего элементы <tex dpi="120">A[leftA \dots rightA]</tex> и помещающего отсортированный массив в <tex dpi="120">B[leftB \dots leftB + rightA - leftA]</tex>
function mergeSortMT2(A, leftA, rightA, B, leftB):
n = r - p + 1
'''if''' n == 1
B[leftB] = A[leftA]
'''else'''
создадим новый массив T[1 <tex dpi="120">\dots</tex> n]
mid = (leftA + rightA) / 2
newMid = mid - leftA + 1
'''spawn''' mergeSortMT2(A, leftA, mid, T, 1)
mergeSortMT2(A, mid + 1, rightA, T, newMid + 1)
'''sync'''
mergeMT(T, 1, newMid, newMid + 1, n, B, leftB)
Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов <tex dpi="130">T_{\mathrm {mergeSort}}(n) = T_{\mathrm {mergeSort}}(\frac{n}{2}) + T_{\mathrm {merge}}(n) = T_{\mathrm {mergeSort}}(\frac{n}{2}) + \Theta(\log^2 n) = \Theta(\log^3 n)</tex>.
==Оценка при фиксированном числе потоков==
Очевидно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как <tex dpi="120">N_{ind}</tex>. Допустим, <tex dpi="120">n</tex> много больше <tex dpi="120">N_{ind}</tex>, что в общем случае верно для ПК и достаточно больших объемов данных. Оценим приведенные выше алгоритмы с учетом наложенных ограничений и допущений:<br>
::[[#.D0.A1.D0.BE.D1.80.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0_.D1.81_.D0.BE.D0.B4.D0.BD.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.BC_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5.D0.BC|Сортировка с однопоточным слиянием]] будет иметь асимптотику <tex dpi="135">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}} + n) = \Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex>:
::::<tex dpi="135">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex> операций нужно на последовательную сортировку массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex>.
::::<tex dpi="135">\Theta(n)</tex> необходимо на последовательное слияние.
::[[#.D0.9C.D0.BD.D0.BE.D0.B3.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D0.BE.D0.B5_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5|Многопоточное слияние]] будет работать за <tex dpi="135">\Theta((\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} + \log n \cdot min(N_{ind}, \log n)=\Theta((\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2})</tex>:
::::Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на <tex dpi="110">min(N_{ind}, \log n)</tex> уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за <tex dpi="135">\Theta(\log n)</tex>
::::Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна
::::<tex dpi="135">T_{\mathrm {merge}}'(n) = 2T_{\mathrm {merge}}'(\frac {3}{4}n) + \Theta(\log n) = \Theta(n^{\log_{\frac{4}{3}}2})</tex>
::Оценим [[#.D0.A1.D0.BE.D1.80.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0_.D1.81_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D0.BF.D0.BE.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.BC_.D1.81.D0.BB.D0.B8.D1.8F.D0.BD.D0.B8.D0.B5.D0.BC|сортировку с многопоточным слиянием]] снизу:
::::Части массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex> гарантированно будут сортироваться последовательно, т.к. только алгоритм сортировки запустит к моменту вызова <tex>\mathrm {mergeSortMT2} </tex> от массива длиной <tex dpi="135">\frac{n}{N_{ind}}</tex> число потоков, равное <tex dpi="135">N_{ind}</tex>. Тогда по основной теореме рекуррентных соотношений:
::::<tex dpi="135">T_{\mathrm {mergeSort}}'(\frac{n}{N_{ind}}) = 2T_{\mathrm {mergeSort}}'(\frac{n}{2N_{ind}}) + \Theta(\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} = \Theta(\frac{n}{N_{ind}})^{\log_{\frac{4}{3}}2}</tex>
Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет <tex dpi="120">\Theta(\frac{n}{N_{ind}}\log \frac{n}{N_{ind}})</tex>.
==Источники информации==
#Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. {{---}} Introduction to Algorithms, Third Edition