Изменения

Перейти к: навигация, поиск

Участник:Shovkoplyas Grigory

392 байта добавлено, 22:35, 15 июня 2014
Нет описания правки
Формула для разделительного элемента <tex> m </tex> получается из следующего уравнения: <tex dpi = "170"> \frac{x - a_l}{m - l} = \frac{a_r - a_l}{r - l} </tex> {{---}}
откуда следует, что <tex> m = l + </tex> <tex dpi = "170"> \frac{x - a_l}{a_r - a_l} \cdot</tex> <tex> (r - l) </tex>. На рисунке внизу показано, из каких соображений берется такая оценка. Интерполяционный поиск основывается на том, что наш массив представляет из себя что-то наподобии арифметической прогрессии.
[[Файл:interpolation_search_from_gshark.png|450px500px|center|Размещение разделительного элемента]]
== Псевдокод ==
== Время работы ==
Асимптотически интерполяционный поиск превосходит по своим характеристикам бинарный. Если ключи распределены случайным образом, то за один шаг алгоритм уменьшает количество проверяемых элементов с <tex> n </tex> до <tex> \sqrt n </tex>(доказательство<ref>http://www.cs.technion.ac.il/~itai/publications/Algorithms/p550-perl.pdf</ref>). То есть, после <tex>k</tex>-ого шага количество проверяемых элементов уменьшается до <tex dpi = 170>n^{\frac{1}{2^k}}</tex>. Значит, остаётся проверить только 2 элемента (и закончить на этом поиск), когда <tex dpi = 150>\frac{1}{2^k} = \log_{n}2 = \frac{1}{\log_{2}n} </tex>. Из этого вытекает, что количество шагов, а значит, и время работы составляет <tex>O(\log \log n)</tex>.
При "плохих" исходных данных (например, при экспоненциальном возрастании элементов) время работы может ухудшиться до <tex> O(n) </tex>.
Эксперименты показали, что интерполяционный поиск не настолько снижает количество выполняемых сравнений, чтобы компенсировать требуемое для дополнительных вычислений время (пока таблица не очень велика). Кроме того, типичные таблицы недостаточно случайны, да и разница между значениями <tex>\log \log n</tex> и <tex>\log n</tex> становится значительной только при очень больших <tex>n</tex>. На практике при поиске в больших файлах оказывается выгодным на ранних стадиях применять интерполяционный поиск, а затем, когда диапазон существенно уменьшится, переходить к двоичному.
==Пример работы вместе с сравнение с бинарным поиском==[[Файл:ip_vs_bin_from_gshark.png|900px|center|Сравнение бинарного и интерполирующего поисков]]==Примечания==<references/>
==Источники информации==
* Дональд Кнут {{---}} Искусство программирования. Том 3. Сортировка и поиск. / Knuth D.E. {{---}} The Art of Computer Programming. Vol. 3. Sorting and Searching.
*[http://en.wikipedia.org/wiki/Interpolation_search Wikipedia {{---}} Interpolation search]
*[http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D1%80%D0%BF%D0%BE%D0%BB%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B8%D0%B9_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA Википедия {{---}}Интерполирующий поиск]
69
правок

Навигация