Изменения

Перейти к: навигация, поиск

Преобразование MTF

313 байт убрано, 19:59, 15 января 2015
Нет описания правки
== Описание алгоритма ==
Изначально каждое возможное значение байта записывается в список (алфавит), в ячейку с номером, равным значению байта, т.е. <tex>(0, 1, 2, 3, \dots, 255)</tex>. В процессе обработки данных этот список изменяется. По мере поступления очередного символа на выход подается номер элемента, содержащего его значение. После чего этот символ перемещается в начало списка, смещая остальные элементы вправо.
Современные алгоритмы (например, bzip2<ref>[http://ru.wikipedia.org/wiki/Bzip2 {{---}} bzip2]</ref>) перед алгоритмом MTF используют [[преобразование Барроуза-Уиллера|алгоритм BWT]], поэтому в качестве примера рассмотрим строку <tex>\mathtt{S} = </tex>''"BCABAAA"'', полученную из строки ''"ABACABA"'' в результате [[Преобразование Барроуза-Уиллера|преобразования Барроуза-Уиллера]]. Первый символ строки <tex>\mathtt{S}</tex> 'B' является вторым элементом алфавита ''"ABC"'', поэтому на вывод подаётся <tex>1</tex>. После перемещения 'B' в начало алфавита тот принимает вид ''"BAC"''. Дальнейшая работа алгоритма показана в таблице:
{| class="wikitable"
|}
Таким образом, результат работы алгоритма: <tex>MTF(\mathtt{S}) = </tex> ''"1222100"''.
Вот примерная реализация этого алгоритма. Здесь массив <tex>\mathtt{alphabet}</tex> хранит количество символов перед символом <tex>\mathtt{S}[\mathtt{i}]</tex>, <tex>\mathtt{N}</tex> {{---}} длина строки <tex>\mathtt{S}</tex>.
<code>
</code>
Данный алгоритм работает за <tex>O(\mathtt{N} \cdot \mathtt{M})</tex>, где <tex>\mathtt{N}</tex> {{---}} размер алфавита, <tex>\mathtt{M}</tex> {{---}} длина строки, что не очень быстро. Этот алгоритм можно реализовать за <tex>O(\mathtt{N}\log(\mathtt{N+M}))</tex>.
== Описание алгоритма за O(N log(N+M)) ==
Пусть дан алфавит размером <tex>\mathtt{M}</tex> и строка <tex>\mathtt{S}</tex> длиной <tex>\mathtt{N}</tex>. Заведем массив <tex>\mathtt{used}[1..\mathtt{N+M}]</tex> и последние <tex>\mathtt{M}</tex> ячеек заполним единицами. Запомним для каждого символа алфавита позицию в нашем массиве. Например, <tex>\mathtt{alphabet}['a'] = \mathtt{N}+1</tex>, <tex>\mathtt{alphabet}['b'] = \mathtt{N}+2</tex>, ... , <tex>\mathtt{alphabet}['z'] = \mathtt{N+M}</tex>.
При обработке <tex>\mathtt{i}</tex>-го символа посчитаем и выпишем сумму на отрезке <tex>[1, \mathtt{alphabet}[\mathtt{S}[\mathtt{i}]] - 1]</tex>, поменяем значения ячеек <tex>\mathtt{used}[\mathtt{N-i}+1]</tex> и <tex>\mathtt{used}[\mathtt{alphabet}[\mathtt{S}[\mathtt{i}]]]</tex> местами, также стоит поменять значение в ячейке <tex>\mathtt{alphabet}[\mathtt{S}[\mathtt{i}]]</tex> на <tex>\mathtt{N-i}+1</tex>.
<code>
</code>
Функцию <tex>\mathtt{sum}</tex> можно реализовывать по-разному.
<code>
</code>
Такая реализация работает за <tex>O(right-left)</tex>, общая сложность алгоритма равна <tex>O(\mathtt{N} \cdot \mathtt{M})</tex> Но можно находить сумму на отрезке при помощи [[Дерево_отрезков._Построение | дерева отрезков]], что сократит время работы до <tex>O(\log(\mathtt{right-left}))</tex>. Итого, общая сложность будет равна <tex>O(\mathtt{N}\log(\mathtt{N+M}))</tex>
== Обратное преобразование ==
Пусть даны строка <tex>\mathtt{S} = </tex>''"1222100"'' и исходный алфавит ''"ABC"''. Символ с номером <tex>1</tex> в алфавите {{---}} это 'B'. На вывод подаётся 'B', и этот символ перемещается в начало алфавита. Символ с номером <tex>2</tex> в алфавите {{---}} это 'A', поэтому 'A' подается на вывод и перемещается в начало алфавита. Дальнейшее преобразование происходит аналогично.
{| class ="wikitable"
|}
Значит, исходная строка <tex>MTF^{-1}(\mathtt{S}) = </tex>''"BCABAAA"''.
== Применение ==
== Ссылки Источники информации ==
* # [http://compression.ru/arctest/descript/bwt-faq.htm Burrows Wheeler Transform FAQ] * # [http://ru.wikipedia.org/wiki/Move-To-Front Move-To-Front (Википедия)] == Литература ==
# Ryabko, B. Ya. ''Data compression by means of a «book stack»'', Problems of Information Transmission, 1980, v. 16: (4), pp.&nbsp;265–269.
# Ryabko, B. Ya.; Horspool, R. Nigel; Cormack, Gordon V. Comments to: ''«A locally adaptive data compression scheme»'' by J. L. Bentley, D. D. Sleator, R. E. Tarjan and V. K. Wei. Comm. ACM 30 (1987), no. 9, 792—794.
10
правок

Навигация