Изменения

Перейти к: навигация, поиск

Пересечение матроидов, определение, примеры

233 байта добавлено, 17:53, 9 июня 2015
Нет описания правки
'''Пересечением матроидов''' (англ. ''matroid intersection'') <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, \mathcal{I} \rangle</tex>, где <tex>X</tex> {{---}} носитель исходных матроидов, а <tex> \mathcal{I} = \mathcal{I}_1 \cap \mathcal{I}_2</tex>.
}}
* Пересечение матроидов не всегда является матроидом.
* Пересечение трех и более матроидов {{---}} это [https://ru.wikipedia.org/wiki/NP-%D0%BF%D0%BE%D0%BB%D0%BD%D0%B0%D1%8F_%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B0| NP-полная задача].
}}
== Разноцветное дерево Разноцветный лес ==
<tex>M_1</tex> {{---}} [[Примеры_матроидов|графовый матроид]], <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это '''разноцветный лес''' (англ. ''rainbow forests'').
{{Утверждение
== Двудольный граф ==
Пусть <tex>G</tex> {{---}} [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф ]] и заданы два матроида <tex>M_1 = \langle X, \mathcal{I}_1 \rangle</tex>, <tex>M_2 = \langle X, \mathcal{I}_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>\mathcal{I}_1 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in L \}</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg(v) \leqslant 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа.
{{Утверждение
|statement =
{{Определение
|definition=
'''Ориентированное R-ориентированное дерево''' (англ. ''r-arborescence'') {{---}} ацикличный орграф (ориентированный граф, не содержащий циклов), в котором только одна вершина <tex>r</tex> имеет нулевую степень захода (в неё не ведут дуги), а все остальные вершины имеют степень захода <tex>1</tex> (в них ведёт ровно по одной дуге).
}}
Пусть <tex>D = \langle V, A \rangle </tex> {{---}} <tex>r</tex>-ориентированное дерево. Пусть граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle A, \mathcal{I}_1 \rangle, M_2 = \langle A, \mathcal{I}_2 \rangle</tex>, где <tex>A</tex> {{---}} множество ребёр графа, <tex>M_1</tex> {{---}} графовый матроид <tex>G</tex>, <tex>\mathcal{I}_2 = \{F \subseteq X: \deg^-(v) \leqslant 1 \: \forall v \in V \setminus \{r\} \}</tex>. Пересечения данных матроидов является ориентированным деревом.
== См. также==
* [[Примеры_матроидовПримеры матроидов]]* [[Алгоритм_построения_базы_в_пересечении_матроидовАлгоритм построения базы в пересечении матроидов]]* [[Алгоритм_построения_базы_в_объединении_матроидовАлгоритм построения базы в объединении матроидов]]
==Источники информации ==
170
правок

Навигация