Изменения

Перейти к: навигация, поиск

Участник:Kabanov

70 байт добавлено, 13:39, 19 августа 2015
м
4.5 Взаимосвязь алгоритмов Дейкстры и A*
Тот факт, что оба алгоритма A* и Дейкстры делят между собой граф путей <tex>P(G)</tex>, вызывает обеспокоенность в отношении правильности работы Дейкстры на <tex>P(G)</tex>. Возобновление A* приводит к изменениям в структуре <tex>P(G)</tex>. Таким образом, после возобновления A*, мы обновляем <tex>P(G)</tex> и проверяет статус поиска Дейкстры (строка 15). В основном, A* может добавить новые узлы, менять <tex>\delta</tex>-значения существующих узлов или даже удалять узлы. A* может также существенно изменять дерево поиска <tex>T</tex>, которое будет в худшем случае разрушать структуру все деревянных куч <tex>H_{T}</tex>. Эти изменения могут приводить к глобальной реструктуризации или даже перестроению <tex>P(G)</tex> с нуля. В худшем случае это может сделать предыдущие поиски Дейкстры на <tex>P(G)</tex> бесполезными таким образом, что нам придется перезапускать алгоритм Дейкстры с нуля.
Если использованная эвристическая оценка допустимая, то наше положение лучше. Нам по-прежнему может понадобится перестроение <tex>P(G)</tex>, но мы покажем, что это перестроение не мешает корректности поиска Дейкстры на <tex>P(G)</tex>. Другими словами, мы не теряем результаты, до сих пор полученные поиском Дейкстры.  В случае монотонной эвристической оценки мы даже не нуждаемся в восстановлении или перестроении <tex>P(G)</tex>. Если <tex>h</tex> монотонная, то дерево поиска A* является деревом кратчайшего пути для всех раскрытых вершин. Следовательно, g-значения раскрытых вершин не изменитсяменяются. Это означает, что <tex>\delta</tex>-значения для внутренних ребер никогда не изменятся. Ребра дерева раскрытых вершин не изменятся также. Следовательно, обновление <tex>\delta</tex>-значений, heaping-up, heaping-down (операции в кучах) или удаление узлов не влекут за собой каких-либо изменений в <tex>P(G)</tex>. Только добавление новых узлов приводит к изменениям в <tex>P(G)</tex>. Следовательно, восстановление или глобальное перестроение или глобальная реструктуризация не требуется в данном случае.
В оставшейся части этого раздела, мы сначала покажем, что корректность поиска Дейкстры на <tex>P(G)</tex> поддерживается в случае допустимой эвристической оценки. После этого мы покажем, что изменения в <tex>P(G)</tex> могут помешать завершенности поиска Дейкстры независимо от того, является ли эвристика допустимой или даже монотонной. Следовательно, мы предложим механизм для её поддержания.
Из леммы 6 мы может вывести следующее следствие.
Следствие 2. {{Лемма|about=следствие 3|statement=Пусть <tex>n</tex> будет произвольным узлов узлом в <tex>P(G)</tex>. Если <tex>h</tex> допустимая функция, то <tex>n</tex> никогда не будет удален из <tex>P(G)</tex> после того, как <tex>n</tex> был рассмотрен алгоритмом Дейкстры. |proof=...}}
Более того, мы докажем, что структура исследованной части <tex>P(G)</tex> не изменится.
418
правок

Навигация