Изменения

Перейти к: навигация, поиск

Рёберное ядро

886 байт добавлено, 18:15, 11 января 2016
Нет описания правки
{{Определение|
definition=
Наименьшее вершинное покрытие M графа G с множеством вершим V называется '''внешним''', если для любого подмножества <tex>M' \subseteq M</tex> выполняется неравнство <tex>|M'| \leqslant |U(M')|</tex>, где <tex>U(M') = \{v| \:v \in V(G) \setminus M, \: vu \in E(G), \: u \in M'\}</tex>.
}}
{{Теорема|
(3) каждое наименьшее вершинное покрытие для <tex>G</tex> является внешним.
}}
[[Файл:EdgeCore.png|thumb|500px|рис. 1. a) граф <tex>H</tex>, б) реберное ядро графа <tex>H</tex> ]]В качестве примера рассмотрим граф H изображенный на рис. 1 а). Этот граф имеет два наименьших вершинных покрытия: <tex>M_1 =\{B, E, F\}</tex> и <tex>M_2 =Ребероне \{B, E, G\}</tex>.Пусть <tex>M_1' = M_1</tex> то <tex>U(M_1') = \{A, C, D, G\}</tex>. Пусть <tex>M_1'' = \{E, F\}</tex>. Тогда <tex>U(M_1'') =\{C, D, G\}</tex>.Отсюда <tex>|M_1'| \leqslant |U(M_1')|</tex> и <tex>|M_1''| \leqslant |U(M_1'')|</tex>. И это верно для любого подмножества <tex>M_1</tex>. Значит, <tex>M_1</tex> {{---}} внешнее покрытие. Значит и <tex>M_2</tex> {{---}} внешнее покрытие.<br> ==Реберное ядро в двудольном графе==
Здесь и далее будем рассматривать двудольный граф <tex>G</tex>, в котором обозначим <tex>S</tex> - множество вершин левой доли, <tex>T</tex> - множество вершин правой доли.
{{Определение |
10
правок

Навигация