Изменения

Перейти к: навигация, поиск

Алгоритм A*

3679 байт добавлено, 18:53, 12 января 2016
Нет описания правки
Алгоритм '''А*'''("англ. ''A star", "А звёздочка"'') {{---}} алгоритм поиска, который находит во взвешенном графе маршрут наименьшей стоимости от начальной вершины до выбранной конечной.
==Описание==
В процессе работы алгоритма для вершин рассчитывается функция <tex>f(v) = g(v) + h(v)</tex>, где
*<tex>g(v)</tex> {{---}} наименьшая стоимость пути в <tex>v</tex> из стартовой вершины,
*<tex>h(v)</tex> {{---}} эвристическое приближение стоимости пути от <tex>v</tex> до конечной цели. <tex>h(v)</tex> должна быть эвристически допустимой, то есть не должна переоценивать расстояние до цели. Чем меньше <tex>h</tex>, тем раньше вершина будет открыта и исследована алгоритмом. Таким образом открытые алгоритмом вершины хранятся в очереди с приоритетом по значению <tex>f(v)</tex>. А* действует подобно [[Алгоритм Дейкстры | алгоритму Дейкстры]] и просматривает среди всех маршрутов ведущих к цели сначала те, которые благодаря имеющейся информации(эвристическая функция) в данный момент являются наилучшими.
Фактически, функция <tex>f(v)</tex> {{---}} длина пути до цели, которая складывается из пройденного расстояния <tex>g(v)</tex> и оставшегося расстояния <tex>h(v)</tex>. Исходя из этого, чем меньше значение <tex>f(v)</tex>, тем раньше мы откроем вершину <tex>v</tex>, так как через неё мы предположительно достигнем расстояние до цели быстрее всего.
Открытые алгоритмом вершины можно хранить в очереди с приоритетом по значению <tex>f(v)</tex>. А* действует подобно [[Алгоритм Дейкстры | алгоритму Дейкстры]] и просматривает среди всех маршрутов ведущих к цели сначала те, которые благодаря имеющейся информации (эвристическая функция) в данный момент являются наилучшими.
 
==Свойства==
Чтобы A* был оптимален, выбранная функция <tex>h(v)</tex> должна быть '''допустимой''' эвристической функцией.
{{Определение
|definition=Говорят, что эвристическая оценка <tex>h(v)</tex> '''допустима''', если для любой вершины <tex>v</tex> значение <tex>h(v)</tex> меньше или равно весу кратчайшего пути от <tex>v</tex> до цели.
}}
 
Допустимая оценка является оптимистичной, потому что она предполагает, что стоимость решения меньше, чем оно есть на самом деле. <br>
Второе, более сильное условие {{---}} функция <tex>h(v)</tex> должна быть '''монотонной'''.
 
{{Определение
|definition=Эвристическая функция <tex>h(v)</tex> называется '''монотонной''' (или '''преемственной'''), если для любой вершины <tex>v_1</tex> и ее потомка <tex>v_2</tex> разность <tex>h(v_1)</tex> и <tex>h(v_2)</tex> не превышает фактического веса ребра <tex>c(v_1, v_2)</tex> от <tex>v_1</tex> до <tex>v_2</tex>, а эвристическая оценка целевого состояния равна нулю.
}}
 
{{Теорема
|statement=Любая монотонная эвристика допустима, однако обратное неверно.
|proof=Пусть <tex>k(v)</tex> {{---}} длина кратчайшего пути из вершины <tex>v</tex> до цели.
Докажем индукцией по числу шагов до цели, что <tex>h(v) \leqslant k(v)</tex>.<br><br>
Если до цели расстояние <tex>0</tex>, то <tex>v</tex> {{---}} цель и <tex>h(v) = 0 \leqslant k(v)</tex>.<br><br>
Пусть <tex>v</tex> находится на расстоянии <tex>i</tex> от цели. Тогда существует потомок <tex>v'</tex>, который находится на кратчайшем пути от <tex>v</tex> до цели и <tex>v'</tex>лежит на расстоянии <tex>i - 1</tex> шагов до цели. Следовательно, <tex>h(v) \leqslant c(v, v') + h(v')</tex>. <br>
По предположению, <tex>h(v') \leqslant k(v')</tex>. Следовательно, <tex>h(v) \leqslant c(v, v') + k(v') = k(v)</tex>. <br><br>Таким образом, монотонная эвристика <tex>h(v)</tex> допустима.
}}
 
{{Утверждение
|statement=Если <tex>h(v)</tex> монотонна, то последовательность значений <tex>f(v)</tex> на любом пути неубывает.
|proof=Доказательство следует из определения монотонности.<br>
Пусть <tex>v'</tex> {{---}} потомок <tex>v</tex>, тогда <tex>g(v') = g(v) + c(v, v')</tex>. <br>Следовательно, <tex>f(v') = g(v') + h(v') = g(v) + c(v, v') + h(v') \geqslant g(v) + h(v) = f(v)</tex>.
}}
 
{{Утверждение
|statement=Алгоритм A* является оптимальным, если функция <tex>h(v)</tex> монотонна.
|proof=Последовательность вершин "развёрнутых" во время работы алгоритма находится в неубывающем порядке значений <tex>f</tex>. Поэтому очередная выбираемая вершина должна представлять собой оптимальное решение, поскольку все дальнейшие узлы будут, по меньшей мере, столь же дорогостоящими.
}}
 
==Примеры эвристик==
Поведение алгоритма сильно зависит от того, какая эвристика используется. В свою очередь, выбор эвристики зависит[[Файл:Diagonal.png|thumb|right|Пример А* на сетке с возможностью ходить в восьми напрвлениях]] от постановки задачи. Часто А* используется для моделирования перемещения по поверхности, покрытой [http://deep-beta.co.uk/wp-content/uploads/2010/11/terrain.0.3+grid.png координатной сеткой].
* Если мы можем перемещаться в четырех направлениях, то в качестве эвристики стоит выбрать [http://en.wikipedia.org/wiki/Manhattan_distance манхэттенское расстояние]<br> <tex>h(v) = |{v.x-goal.x}| + |{v.y-goal.y}|</tex>.
* [http://ru.wikipedia.org/wiki/Расстояние_Чебышева Расстояние Чебышева] применяется когда к четырем направлениям добавляются диагонали:<br> <tex>h(v) = \max{(|{v.x-goal.x}|, |{v.y-goal.y}|)}</tex>.
* Если передвижение не ограниченно ограничено сеткой, то можно использовать евклидово расстояние по прямой:<br> <tex>h(v) = \sqrt{(v.x-goal.x)^2 + (v.y-goal.y)^2}</tex>.
Также стоит обратить внимание на то как соотносятся <tex>f(v)</tex> и <tex>h(v)</tex>. Если они измеряются в разных величинах (например, <tex>g(v)</tex> {{---}} это расстояние в километрах, а <tex>h(v)</tex> {{---}} оценка времени пути в часах) А* может выдать некорректный результат.
==ПсевдокодРеализация== В приведённой реализации:* <tex>Q</tex> {{---}} множество вершин, которые требуется рассмотреть* <tex>U</tex> {{---}} множество рассмотренных вершин* <tex>f[x]</tex> {{---}} значение эвристической функции "расстояние + стоимость" для вершины <tex>x</tex>* <tex>g[Файл:Astar_progress_animationx]</tex> {{---}} стоимость пути от начальной вершины до <tex>x</tex>* <tex>h(x)</tex> {{---}} эвристическая оценка расстояния от вершины <tex>x</tex> до конечной вершины.gif|thumb|right|Пример На каждом этапе работы А*алгоритма из множества <tex>Q</tex> выбирается вершина с наименьшим значением эвристической функции и просматриваются её соседи. Пустые кружки принадлежат к открытому спискуДля каждого из соседей обновлятся расстояние, а окрашенные к закрытомузначение эвристическо функции и он добавляется в множество <tex>Q</tex>.]]<br>Псевдокод: void '''bool''' A*(start,goal) ''':''' closed :U = {}; <tex> \varnothing </tex> Q = <tex> \varnothing </ Множество вершин расстояние до которых мы уже оценилиtex> openQ.push(start);// Очередь с приоритетом g[start] = 0 f[start] = g[start] + h[(start]; parent[start] = start;) '''while (open''' Q.size() != 0) x :current = open.pop(); вершина из <tex>Q</tex> с минимальным значением <tex>f</tex> '''if (x ''' current == goal) '''return succsess(x);''' ''true'' <font color="green">// Кратчайший нашли путь найден до нужной вершины</font> closedQ.remove(current) U.push(xcurrent); '''for (y ''' v : xy in E) смежные с current вершины if (y in closed) continue; tmp :tentative_score = g[xcurrent] + d[x(current,y] v) <font color="green">// Стоимость d(current, v) {{---}} стоимость пути до y через хмежду current и v</font> '''if (y not ''' <tex>v \in open) open.push(y); tentative_is_better U</tex> '''and''' tentative_score >= true; else if (tmp < g[yv]) // можно улучшить расстояние до y tentative_is_better = true else tentative_is_better = false '''continue''' '''if (tentative_is_better == true) ''' <tex>v \notin U<// найден новый, более короткий путь до y tex> '''or''' tentative_score < g[v] parent[yv] = x;current g[yv] = tmp;tentative_score f[yv] = g[yv] + h[y]; (v) '''if''' <tex>v \notin Q</tex> Q.push(v) '''return failure; // Наша цель недостижима из start''' ''false''
==Свойства==См. также===Корректность=== Если <tex>h(v)</tex> всегда меньше либо равна истинной стоимости пути до цели, то А* гарантированно найдет кратчайший путь, причем чем меньше разница между эвристикой и истинной стоимостью, тем меньше вершин рассмотрит алгоритм.{{Теорема|statement=Пусть G - граф, h(v) - допустимая эвристическая функция. Тогда после завершения работы будет найдено кратчайшее расстояние до целевой вершины.|proof=Когда A* завершает поиск, он, согласно определению, нашёл путь, истинная стоимость которого меньше, чем оценка стоимости любого пути через любой открытый узел. Но поскольку эти оценки являются оптимистичными, соответствующие узлы можно без сомнений отбросить. Иначе говоря, A* никогда не упустит возможности минимизировать длину пути, и потому является допустимым.}}[[Эвристики для поиска кратчайших путей]]
===Оптимальность=Источники информации==Любой другой алгоритм* С. Рассел, использующий ту же эвристическую функцию <tex>h(v)</tex>П. Норвиг {{---}} Искусственный интеллект. Современный подход, рассмотрит не меньше вершин, чем А*. ==Ссылки==2е издание*[httphttps://ru.wikipedia.org/wiki/Алгоритм_поиска_A* Википедия:Алгоритм_поиска_A{{---}} Алгоритм поиска A*]*[httphttps://en.wikipedia.org/wiki/A*_search_algorithm Wikipedia:{{---}} A*_search_algorithmsearch algorithm]*[http://theory.stanford.edu/~amitp/GameProgramming/ Статья о поиске кратчайших путей]*[http://dl.acm.org/citation.cfm?id=3830&coll=portal&dl=ACM Generalized best-first search strategies and the optimality of A*]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Кратчайшие пути в графах ]]
188
правок

Навигация