Изменения

Перейти к: навигация, поиск

Теорема Гринберга

14 байт убрано, 22:03, 28 января 2016
м
Теорема Гринберга
|about=Гринберг
|statement=
Пусть связный граф <tex> G </tex> имеет гамильтонов бонд <tex> H </tex> с торцевыми графами <tex> X </tex> и <tex> Y </tex>. Пусть <tex> f_n^{X} </tex> и <tex> f_n^{Y} </tex> {{---}} число и вершин в графов <tex> X </tex> и <tex> Y </tex> соответственно, имеющих в <tex> G </tex> валентность степень <tex> n ~ (n = 1, ~ 2, ~ 3, ~ \ldots) </tex>. Тогда:
<center> <tex> \sum\limits_{n=1}^{\infty} (n - 2) (f_n^{X} - f_n^{Y}) = 0 ~~~ \bf{(1)} </tex>. </center>
|proof=
Используя теорему '''1.372''', находим, что:
<center> <tex> \sum\limits_{n=1}^{\infty} f_n^{X} = |E(X)| + 1 ~~~ \textbf{(2)} </tex>. </center>
Ясно также, что:
39
правок

Навигация