Изменения
Нет описания правки
# Заданы две последовательности $a$ и $b$. Подпоследовательность $c$ называется общей для $a$ и $b$, если $c$ является подпоследовательностью $a$ и подпоследовательностью $b$. Найдите наибольшую общую подпоследовательность $a$ и $b$ за время $O(|a| \cdot |b|)$ и памятью $o(|a| \cdot |b|)$.
# Задача о рюкзаке. Заданы $n$ предметов, для каждого известен вес $w_i$ и цены $p_i$. Вам нужно выбрать подмножество предметов суммарным весом не более $W$ с максимальной суммарной ценой. Найдите это подмножество за время $O(W \cdot n)$ и память $O(W)$.
# Подпалиндромом последовательности будем называть подпоследовательность $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$, в которой для любого $j$ выполняется $a_{i_j} = a_{i_{k-j+1}}$. Докажите, что длина максимального подпалиндрома последовательности $a$ равна длине наибольшей общей подпоследовательности $a$ и $a^r$, где $a^r$ {{---}} это развернутая последовательность $a$ ($a^r_i = a_{|a| - i + 1}$).
# Покажите, что если решить задачу о максимальном подпалиндроме, использовав алгоритм поиска наибольшей общей подпоследовательности, как в предыдущем задании, то алгоритм может выдать подпоследовательность, которая не является палиндромом. Предложите алгоритм, который находит максимальный подпалиндром последовательности $a$ за время и память $O(|a|^2)$.
</wikitex>