Изменения

Перейти к: навигация, поиск

Количество подпалиндромов в строке

5244 байта убрано, 23:00, 18 апреля 2016
Перенаправление на Алгоритм Манакера
{{Шаблон:Задача|definition = Пусть дана строка <tex>s</tex>, требуется посчитать количество #перенаправление [[Основные_определения,_связанные_со_строками#palindrome | палиндромов]] в ней.}} == Алгоритм ===== Идея ===Рассмотрим сначала задачу поиска палиндромов нечетной длины. Центром строки нечетной длины назовем символ под индексом <tex>\left\lfloor \dfrac{|t|}{2}\right\rfloor</tex>. Для каждой позиции в строке <tex>s</tex> найдем длину наибольшего палиндрома с центром в этой позиции. Очевидно, что если строка <tex>t</tex> является палиндромом, то строка полученная вычеркиванием первого и последнего символа из <tex>t</tex> также является палиндромом, поэтому длину палиндрома можно искать [[Целочисленный_двоичный_поиск | бинарным поиском]]. Проверить совпадение левой и правой половины можно выполнить за <tex>O(1)</tex>, используя метод хеширования.  Для палиндромов четной длины алгоритм такой же. Центр строки четной длины {{---}} некий мнимый элемент между <tex>\dfrac{|t|}{2} - 1</tex> и <tex>\dfrac{|t|}{2}</tex>. Только требуется проверять вторую строку со сдвигом на единицу. Следует заметить, что мы не посчитаем никакой палиндром дважды из-за четности-нечетности длин палиндромов. === Псевдокод === '''int''' binarySearch(s : '''string''', center, shift : '''int'''): ''<font color=green>//shift = 0 при поиске палиндрома нечетной длины, иначе shift = 1</font>'' '''int''' l = -1, r = min(center, s.length - center + shift), m = 0 '''while''' r - l != 1 m = l + (r - l) / 2 ''<font color=green>//reversed_hash возвращает хэш развернутой строки s</font>'' '''if''' hash(s[center - m..center]) == reversed_hash(s[center + shift..center + shift + m]) l = m '''else''' r = m '''return''' r  '''int''' palindromesCount(s : '''string'''): '''int''' ans = 0 '''for''' i = 0 '''to''' s.length ans += binarySearch(s, i, 0) + binarySearch(s, i, 1) '''return''' ans === Время работы ===Изначальный подсчет хешей производится за <tex>O(|s|)</tex>. Каждая итерация будет выполняться за <tex>O(\log(|s|))</tex>, всего итераций {{---}} <tex>|s|</tex>. Итоговое время работы алгоритма <tex>O(|s|+|s|\cdot \log(|s|)) = O(|s|\cdot \log(|s|))</tex>. === Избавление от коллизий ===У хешей есть один недостаток {{---}} коллизии: можно подобрать входные данные так, что хеши разных строк будут совпадать. Абсолютно точно проверить две подстроки на совпадение можно с помощью [[Суффиксный массив | суффиксного массива]], но с дополнительной памятью <tex>O(|s|\cdot \log(|s|))</tex>. Для этого построим суффиксный массив для строки <tex>s + \# + reverse(s)</tex>, при этом сохраним промежуточные результаты классов эквивалентности <tex>c</tex>. Пусть нам требуется проверить на совпадение подстроки <tex>s[i..i + l]</tex> и <tex>s[j..j + l]</tex>. Разобьем каждую нашу строку на две пересекающиеся подстроки длиной <tex>2^k</tex>, где <tex>k = \lfloor \log{l} \rfloor</tex>. Тогда наши строки совпадают, если <tex>c[k][i] = c[k][j]</tex> и <tex>c[k][i + l - 2^k] = c[k][j + l - 2^k]</tex>.  Итоговая асимптотика алгоритма: предподсчет за построение суффиксного массива и <tex>O(\log(|s|))</tex> на запрос, если предподсчитать все <tex>k</tex>, то <tex>O(1)</tex>. ==См. также==*[[Суффиксный массив]]*[[Поиск наибольшей общей подстроки двух строк с использованием хеширования]] ==Источники информации==* [http://e-maxx.ru/algo/suffix_array#5 MAXimal :: algo :: Суффиксный массив][[Категория:Алгоритмы и структуры данных]][[Категория:Суффиксный массивМанакера]]
Анонимный участник

Навигация