Изменения

Перейти к: навигация, поиск

J2pij1Lmax

22 байта добавлено, 16:01, 17 мая 2016
Нет описания правки
<tex> l(A(v)) \leqslant l(A(t)) </tex> <tex> for</tex> <tex> v = 1, . . . , t - 1</tex> и
<tex> l(A(0)) \leqslant l(A(t)) </tex> <tex> if </tex> <tex> A(0) \neq \emptyset</tex>.
<tex>(***)</tex>
Таким образом, в каждом расписании должно существовать, по крайней мере, одно опоздание, т.к. если <tex> A(0)\neq \emptyset</tex> то <tex> l(A(v)) < t + 1</tex> при <tex> v = 0, . . . , t</tex> и мы должны запланировать <tex> t + 1 </tex> операций во временном интервале <tex> [0, t] </tex>, что невозможно. Если же <tex> A(0) = \emptyset </tex>, то все задачи начинаются на машине <tex> B </tex> и <tex> t</tex> операций должны обрабатываться в интервале времени <tex> [1, t] </tex>, что тоже не возможно.
Для доказательства <tex>(***) </tex> заметим, что (***) верно, если <tex> A(t) </tex> является первой операцией для работы, так как если <tex> l(A(t)) < l(A(v)) </tex> при некоторых <tex>v = 0. . . , t - 1</tex>,
то алгоритм должен запланировать <tex> A(t) </tex> перед <tex> A(v) </tex>.
Теперь положим <tex> A(t) = O_{ij}</tex> для какого-нибудь <tex> i</tex> и <tex> j > 1</tex>.
Анонимный участник

Навигация