Изменения

Перейти к: навигация, поиск

Примитивно рекурсивные функции

14 785 байт добавлено, 22:34, 2 ноября 2016
Нет описания правки
Если некоторая функция <tex>N^n \rightarrow N</tex> может быть задана с помощью данных примитивов, то она называется рекурсивной. Если некоторую функцию можно собрать исключительно из первых 5 примитивов (то есть без использования операции минимизации), то такая функция называется примитивно-рекурсивной.
==Примитивно рекурсивные функции==
=== Основные определения ===
Рассмотрим следующие правила преобразования функций:
 
==== Подстановка ====
Рассмотрим <tex> k </tex>-местную функцию <tex> \mathrm{f}(x_1,\ldots,x_k) </tex> и <tex> k </tex> <tex>n </tex>-местных функций <tex> \mathrm{g_i}(x_1,x_2,\ldots,x_n) </tex>. Тогда после преобразования у нас появится <tex> n </tex>-местная функция <tex>\mathrm{F} </tex>, такая что:
<tex> \mathrm{F} = \mathrm{f}(\mathrm{g_1}(x_1,\ldots,x_n),\ldots, \mathrm{g_k}(x_1,\ldots,x_n)) </tex>.
 
==== Рекурсия ====
Рассмотрим <tex> k </tex>-местную функцию <tex> \mathrm{f} </tex> и <tex> (k + 2) </tex>-местную функцию <tex> \mathrm{h} </tex>. Тогда после преобразования у нас будет <tex> (k+1) </tex>-местная функция <tex> \mathrm{g} </tex>, которая определена следующим образом:
 
<tex>\mathrm{g}(x_1,\ldots,x_n,0)=\mathrm{f}(x_1,\ldots,x_n)</tex>
 
<tex>\mathrm{g}(x_1,\ldots,x_n,y+1)=\mathrm{h}(x_1,\ldots,x_n,y,\mathrm{g}(x_1,\ldots, x_n,y))</tex>
 
При этом будем говорить, что рекурсия запускается по аргументу <tex> y </tex>.
 
{{Определение
|definition=
'''Примитивно рекурсивными''' называют функции, которые можно получить с помощью правил подстановки и рекурсии из константной функции <tex> \textbf 0 </tex>, функции <tex> \mathrm{I}(x) = x + 1, </tex> и набора функций <tex> \mathrm{P_{n,k}}(x_1,\ldots,x_n) = x_k,</tex> где <tex> k \le n </tex>.
 
}}
Заметим, что если <tex> \mathrm{f} </tex> {{---}} <tex>n</tex>-местная примитивно рекурсивная функция, то она определена на всем множестве <tex> \mathbb {N}^{n} </tex>, так как <tex> \mathrm{f} </tex> получается путем правил преобразования из всюду определенных функций, и правила преобразования не портят всюду определенность. Говоря неформальным языком, рекурсивные функции напоминают программы, у которых при любых входных данных все циклы и рекурсий завершатся за конечное время.
 
Благодаря проекторам мы можем делать следующие преобразования:
*В правиле подстановки можно использовать функции с разным числом аргументов. Например, подстановка <tex> \mathrm{F}(x,y) =\mathrm{f}(\mathrm{g}(y),\mathrm{h}(x,x,y)) </tex> эквивалентна <tex> \mathrm{F}(x,y,z) = \mathrm{f}(\mathrm{g}(\mathrm{P_{2,2}}(x,y)),\mathrm{h}(\mathrm{P_{2,1}}(x,y),\mathrm{P_{2,1}}(x,y),\mathrm{P_{2,2}}(x,y))) </tex>, но если <tex> \mathrm{F} </tex> не константная функция то все подставляемые функции должны иметь хотя бы один аргумент.
*В рекурсии не обязательно вести индукцию по последнему аргументу. Следует из того что мы можем с помощью проекторов поставить требуемый аргумент на последнее место.
В дальнейшем вместо <tex> \mathrm{P_{n,k}}(x_1,\ldots,x_k) </tex> будем писать просто <tex> x_k </tex>, подразумевая требуемое нам <tex> n </tex>.
 
=== Арифметические операции на примитивно рекурсивных функциях ===
 
==== ''' n '''-местный ноль ====
<tex> \textbf 0 </tex> - функция нуля аргументов.
 
Выразим сначала <tex> \textbf 0^1 </tex>
 
<tex> \textbf 0^{1}(0) = \textbf 0 </tex>
 
<tex> \textbf 0^{1}(y+1) = \mathrm{h}(y,\textbf 0^{1}(y)) </tex>, где <tex> \mathrm{h}(x,y) = y </tex>
 
Теперь выразим <tex> \textbf 0^n </tex>
 
<tex> \textbf 0^{n}(x_1,\ldots,x_{n-1},0) = \textbf 0^{n-1} </tex>
 
<tex> \textbf 0^{n}(x_1,\ldots,x_{n-1},y+1) = \mathrm{h}(x_1,\ldots,x_{n-1},\textbf 0^{n}(y)) </tex>, где <tex> \mathrm{h}(x_1,\ldots, x_n,y) = y </tex>
 
Константа <tex> \textbf M </tex> равна <tex> \mathrm{I}(\textbf{M-1}) </tex>
 
<tex> \textbf M^n </tex> - n местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом.
 
==== Сложения ====
<tex> \mathrm{sum}(x,0) = x </tex>
 
<tex> \mathrm{sum}(x,y+1) = \mathrm{h}(x,y,\mathrm{sum}(x,y)) </tex> , где <tex> \mathrm{h}(x,y,z)=\mathrm{I}(z) </tex>
 
==== Умножения ====
<tex> \mathrm{prod}(x,0) = \textbf 0^1(x) </tex>
 
<tex> \mathrm{prod}(x,y+1) = \mathrm{h}(x,y,\mathrm{prod}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z)=\mathrm{sum}(x,z) </tex>
 
==== Вычитания ====
Если <tex> x < y </tex>, то <tex> \mathrm{sub}(x,y) = 0 </tex> , иначе <tex> \mathrm{sub}(x,y) = x - y </tex>.
 
Рассмотрим сначала вычитания единицы <tex> \mathrm{sub_{1}}(x) = x - 1 </tex>
 
<tex> \mathrm{sub_1}(0) = \textbf 0 </tex>
 
<tex> \mathrm{sub_1}(x+1) = \mathrm{h}(x,\mathrm{sub_1}(x)) </tex>, где <tex> \mathrm{h}(x,y) = x </tex>
 
Теперь рассмотрим <tex> \mathrm{sub}(x,y) </tex>
 
<tex> \mathrm{sub}(x,0) = x </tex>
 
<tex> \mathrm{sub}(x,y+1) = \mathrm{h}(x,y,\mathrm{sub}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) =\mathrm{sub_1}(z) </tex>
 
==== Операции сравнения ====
<tex> \mathrm{eq}(x,y) = 1 </tex> если <tex> x = y </tex>, иначе <tex> \mathrm{eq}(x,y) = 0 </tex>
 
<tex> \mathrm{le}(x,y) = 1 </tex> если <tex> x \le y </tex>, иначе <tex> \mathrm{lq}(x,y) = 0 </tex>
 
<tex> \mathrm{lower}(x,y) = 1 </tex> если <tex> x < y </tex>, иначе <tex> \mathrm{lower}(x,y) = 0 </tex>
 
Сначала выразим <tex> \mathrm{eq_{0}}(x) = \mathrm{eq}(x,0) </tex>
 
<tex> \mathrm{eq_0}(0) =\mathrm{I}(\textbf 0) </tex>
 
<tex> \mathrm{eq_0}(y+1) = \mathrm{h}(y,\mathrm{eq}(y)) </tex> , где <tex> \mathrm{h}(y,\mathrm{eq}(y)) = \textbf 0^2(x,y) </tex>
 
Теперь все остальные функции
 
<tex> \mathrm{le}(x,y) = \mathrm{eq_0}(\mathrm{sub}(x,y)) </tex>
 
<tex> \mathrm{eq}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(y,x)) </tex>
 
<tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{I}(x),y)) </tex>
 
==== IF ====
<tex> \mathrm{if}(0,x,y) = y </tex>
 
<tex> \mathrm{if}(c+1,x,y) = \mathrm{h}(c,x,y,\mathrm{if}(c,x,y)) </tex> , где <tex> \mathrm{h}(c,x,y,d) = x </tex>
 
==== Деление ====
<tex> \mathrm{divide}(x,y) = \lfloor {\frac{x}{y}} \rfloor </tex>, если <tex> y > 0 </tex>. Если же <tex> y = 0 </tex>, то <tex> \mathrm{divide}(x,0) </tex> и все связанные с делением функции равны каким то ,не интересными для нас, числами.
 
Сначала определим <tex> \mathrm{divmax}(x,y) </tex> {{---}} функция равна максимальному числу меньшему или равному <tex> x </tex>,которое нацело делится на <tex> y </tex>.
 
<tex> \mathrm{divmax}(0,y) =\textbf 0^{1} </tex>
 
<tex> \mathrm{divmax}(x+1,y) = \mathrm{h}(x,y,\mathrm{divmax}(x,y)) </tex>,
где <tex> \mathrm{h}(x,y,z) = \mathrm{if}(\mathrm{eq}(\mathrm{sub}(\mathrm{I}(x),z),y),\mathrm{I}(x),z) </tex>,
 
или не формально если <tex> x+1 - y = z </tex> то <tex> \mathrm{h}(x,y,z) = x+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex>
 
Теперь само деления
 
<tex> \mathrm{divide}(0,y) =\textbf 0^{1} </tex>
 
<tex> \mathrm{divide}(x,y) = \mathrm{h}(x,y,\mathrm{divide}(x,y)) </tex>, где <tex> \mathrm{h}(x,y,z) = \mathrm{sum}(z,\mathrm{eq}(\mathrm{I}(x),\mathrm{divmax}(\mathrm{I}(x),y))) </tex>
 
или не формально если <tex> x+1~\vdots~y </tex>, то <tex> \mathrm{h}(x,y,z) = z+1 </tex>, иначе <tex> \mathrm{h}(x,y,z) = z </tex>
 
Остаток от деления выражается так:
 
<tex> \mathrm{mod}(x,y) = \mathrm{sub}(x,\mathrm{mul}(y,\mathrm{divide}(x,y))) </tex>
 
==== Работа со списками фиксированной длины ====
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск <tex> n </tex> - того простого числа.
Рассмотрим список из натуральны чисел <tex> [x_1,\ldots,x_n] </tex>, тогда ему в соответствия можно поставить число <tex> p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} </tex>, где <tex> p_i - i</tex>-тое простое число. Как видно из представления,создания списка, взятие <tex> i </tex> - того
элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.
 
=== Теорема о примитивной рекурсивности вычислимых функций ===
{{Теорема
|statement=Следующие Если для [[Вычислимые функции являются |вычислимой функции]] <tex> \mathrm{F} </tex> существует примитивно-рекурсивными:сложениерекурсивная функция <tex> \mathrm{T} </tex>, умножениетакая что для любых аргументов <tex> args </tex> максимальное количество шагов, ограниченное вычитание за которое будет посчитана <tex> \mathrm{F}(которое x) </tex> на [[Машина Тьюринга|МТ]] равно 0, если результат вычитания отрицателен <tex> \mathrm{T}(args)</tex>,целочисленное деление, остаток от делениято <tex> \mathrm{F} </tex> примитивно рекурсивная функция.
|proof=
Каждому состоянию [[Машина Тьюринга|МТ]] поставим в соответствие список из четырех чисел <tex> [L,R,S,C] </tex>, где:
 
<tex> L </tex> - состояние [[Машина Тьюринга|МТ]] слева от головки ленты, представлено в виде числа в системы счисления с основанием равным алфавиту [[Машина Тьюринга|МТ]]. Младшие разряды находятся возле головки. Пробелу соответствует ноль, чтобы число было конечным.
 
<tex> R </tex> - состояние [[Машина Тьюринга|МТ]] справа от головки, представлено аналогично <tex> L </tex> только возле головки [[Машина Тьюринга|МТ]] находятся старшие разряды.
 
<tex> S </tex> - номер текущего состояния
 
<tex> C </tex> - символ на который указывает головка ленты.
 
Тогда всем переходам соответствует функция <tex> \mathrm{f}([L,R,S,C]) </tex> принимающая состояние [[Машина Тьюринга|МТ]] и возвращающая новое состояние.
Покажем что она примитивно рекурсивная . При применении перехода в <tex> C </tex> записывается новый символ,затем из-за сдвига головки в <tex> L </tex> и <tex> R </tex> в конец добавляется новая цифра или удаляется старая, затем в <tex> C </tex> записываетcя символ после сдвига, и в конце перехода в <tex> S </tex> записывается новое состояние автомата. Операции добавления в конец цифры или удаления последней цифры легко выражаются через простые арифметические операции, следовательно они примитивно рекурсивные. Все остальные операции являются простыми операциями над списками, а значит они тоже примитивно рекурсивные. Из этого следует что применения перехода {{---}} примитивно рекурсивная функция. В силу того что нужный переход можно выбрать используя конечное число функций <tex> \mathrm{if} </tex> следует что и <tex> \mathrm{f} </tex> также является примитивно рекурсивной функцией.
 
Функции преобразование аргументов в формат входных данных для [[Машина Тьюринга|МТ]] и получения ответа по состоянию [[Машина Тьюринга|МТ]] также выражаются через простые арифметические операции а значит они примитивно рекурсивные. Назовем их <tex>\mathrm{IN} </tex> и <tex> \mathrm{OUT} </tex>.
 
Рассмотрим функцию двух аргументов <tex> \mathrm{N}([L,R,S,C],t) </tex> которая принимает состояние [[Машина Тьюринга|МТ]] , число шагов <tex> t </tex> и возвращает состояние [[Машина Тьюринга|МТ]] после <tex> t </tex> шагов.
Покажем что <tex>\mathrm{N}</tex> - примитивно рекурсивная функция.
<tex>\operatorname mathrm{plus} = R \langle U^1_1, S\langle N, U^3_3 \rangle\rangle \\\operatorname {dec} = R \langle Z([L, U^2_1 \rangle \\\operatorname {minus} = R \langle U^1_1, S\langle\operatorname {dec}, U^3_3 \rangle\rangle \\\operatorname {one} = S \langle N, Z \rangle \\\operatorname {mul} = R \langle Z, S \langle\operatorname {plus}, U^3_1C], U^3_3 \rangle\rangle \\\operatorname {pow} t) = R \langle\operatorname {one}[L, S \langle\operatorname {mul}, U^3_1, U^3_3 \rangle\rangle \\\operatorname {sign} = R \langle Z, S \langle N, S \langle Z, U^2_1 \rangle\rangle \\C] </tex>
<tex> \mathrm{N}([L,R,S,C],t+1) = \mathrm{h}([L,R,S,C],t+1,\mathrm{N}([L,R,S,C],t)) </tex> , где <tex> \mathrm{h}([L,R,S,X],y,[L1,R1,S1,C1]) = \mathrm{f}([L1,R1,S1,C1]) </tex>
Вместо <tex> t </tex> подставим <tex> \mathrm{T}(args) </tex> и в итоге получим что <tex> \mathrm{F}(args) = \mathrm{OUT}(\mathrm{N}(\mathrm{IN}(args),\mathrm{T}(args))) </tex> - примитивно рекурсивная функция.
}}
 
= Арифметические функции и отношения. Их выразимость в формальной арифметике =
}}
 
== Источники ин ==
* Н. К. Верещагин, А. Шень. [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., испр., М.: МЦНМО, 2012]
* [http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8) Рекурсивные функции на википедии]
313
правок

Навигация